性   别: 男

导   师: 博士导师

学科专业: 干细胞与组织工程;人体解剖与组织胚胎学

 

个人简介:

医学博士、教授、博士生导师。1977年开始从事组织学与胚胎学专业。1980年攻读中山医学院硕士研究生,探讨神经生长因子促进神经元突起生长机制。1988年攻读华西医科大学(现四川大学)博士研究生,研究吗啡对脊髓可塑性的影响。1998年在美国印第安纳州大学医学院做博士后研究,探讨全脑缺血后神经元凋亡机制。回国后,研究干细胞移植与脊髓损伤修复机制。2003年在香港大学医学院做访问学者,研究成体干细胞的分化。聘任为中山大学中山医学院组织胚胎学教研室教授、教研室主任(2003-2018)、中山大学脊髓损伤研究所副所长、中山大学干细胞与组织工程教育部重点实验室副主任、广东省脑功能与脑疾病重点实验室副主任、中国解剖学会常务理事、广东省解剖学会理事长(2007-2016)、广东省人体生物组织工程学会副理事长、广东省细胞生物学会副理事长、江苏省神经再生协同创新中心核心成员、四川省干细胞应用研究中心重点实验室学术委员会委员、河南省高等学校组织再生重点开放实验室学术委员会委员、解剖学研究杂志副主编。获国务院特殊津贴专家荣誉。培养和指导博士生28名、硕士生32名、博士后4名、特聘研究员2名和特聘副研究员2名。

 

重要学术研究成果与贡献:

自1984年至现在, 发表学术论文162余篇, 其中63篇发表在国际学术期刊上。共获35项校内、外科研基金, 其中有国家自然科学基金(10项)、国家重点研发计划项目(课题项目)、教育部博士学科点优先发展领域项目和广东省重点科技专项基金等。1998年,“吗啡促进脊髓可塑性变化的研究”获国家卫生部科技进步奖三等奖。1999年参与鞠躬院士负责的国家重点基础研究课题(973)“脊髓损伤修复的研究”。“人神经营养素-3受体基因重组腺病毒构建方法”,2008年获国家发明专利授权。“一种用于修复神经损伤的明胶海绵圆柱体支架的构建”,2011年获国家发明专利授权。“一种用于修复脊髓损伤的人工神经网络样导管的构建”,2015年获国家发明专利授权。“一种具有趋化功能的生物活性支架的制备和应用”,2018年获国家发明专利授权。现研究方向是: 1. 组织工程神经网络修复脊髓损伤;2. 电针联合干细胞移植修复脊髓损伤。

该研究团队一直从事脊髓可塑性、干细胞移植与脊髓损伤修复、组织工程神经网络修复脊髓损伤和电针联合干细胞移植修复脊髓损伤等研究,并取得如下主要学术成果:1.) 首先发现吗啡可以促进备用根初级传入纤维在脊髓内侧支出芽,并与失去初级传入纤维支配的靶神经元重建突触联系; 备用根背根节神经元发出的初级传入纤维侧支出芽在脊髓内重建突触结构后,其胞体亦发生相应的可塑性变化,吗啡对这些变化有明显的促进作用; 这些可塑变化与吗啡促进脊髓内神经营养活性物质分泌有关。2.) 将神经营养素-3(NT-3)基因修饰雪旺细胞与NT-3受体(TrkC)基因修饰神经干细胞(NSCs)或骨髓间充质干细胞(MSCs)联合移植到全横断脊髓损伤处,能够促进NSCs或MSCs分化为NSC或MSC源性神经元,替换因损伤而死亡的宿主神经元。同时,更好地保护受损伤的脊髓背核、中脑红核和大脑皮质神经元存活,促进其轴突再生、重建突触和髓鞘形成。其脊髓神经传导功能如皮质运动诱发电位和感觉诱发电位有一定程度的恢复,瘫痪的后肢自主运动得到改善。3.) 在体外成功构建了一种具有突触传递功能的NSC或MSC源性神经网络组织,将其移植到脊髓损伤处,可与宿主神经网络整合,并改善受损伤脊髓的功能。4.) 率先应用电针督脉穴刺激全横断脊髓损伤或脊髓脱髓鞘损伤的脊膜支传入神经纤维将信息传入脊髓,激活脊髓组织细胞合成和分泌NT-3,介导表达TrkC的外源性NSCs和MSCs在全横断脊髓损伤/移植处或脊髓脱髓鞘损伤/移植处存活、分化和迁移,在改善受损伤组织微环境的同时替换和保护受损伤的宿主神经元、促进轴突再生及其髓鞘形成、改善皮层运动诱发电位以及瘫痪肢体的运动功能。

从上述成果可了解到,该研究团队模拟脊髓具有传导及调节神经信息的结构和功能特点,联合应用神经营养因子及其受体、成体组织干细胞或诱导性多能干细胞和生物材料等组织工程新技术,构建一种具有突触传递功能的外源性神经网络支架或类脊髓组织,然后将它移植到全横断脊髓损伤处,在改善受损伤组织微环境的同时与其诱导的内源性新生神经元动态整合及功能协同,起到修复神经传导通路的神经元中继器作用,接收上、下行神经信息和调节神经信息,并将神经信息传递给损伤处两侧断端的宿主神经元,改善脊髓自主运动和感觉功能。由此提出一个有趣而又具有挑战性的科学问题: 在成年哺乳动物全横断脊髓损伤后釆用移植组织工程神经元中继器(tissue engineering neuronal relay)的修复策略,可以改变“成年哺乳动物脊髓内再生的上、下行神经传导束神经纤维必须穿越全横断脊髓损伤处才能恢复脊髓自主运动和感觉功能”的传统观念。

该研究团队将通过后续的国家重点研发计划项目课题、国家自然科学基金重大项目课题、国家自然科学基金重点项目、国家自然科学基金面上项目等,探讨组织工程神经元中继器(或类脊髓组织)移植修复脊髓受损伤神经网络的机制,研究出具有自主知识产权的功能性神经网络 (或类脊髓组织)、基因治疗、细胞治疗和细胞重编程等策略,以此解决脊髓受损伤组织微环境不利于其自身重建神经网络这一关键科学问题,为临床治疗脊髓损伤提供应用基础研究依据。

 

学术论著与教材:

2001年主编《人体结构学》, 94.7万字, 北京: 科学出版社出版;
2001年主编《组织学胚胎学(考试辅导丛书)》, 33.0万字, 北京: 科技文献出版社出版;
2002年主编《组织学与胚胎学实验指导》, 20.0万字, 北京: 科技文献出版社出版;
2004年主编《组织学胚胎学(考试辅导教材)》修订版, 47.7万字, 北京: 科技文献出版社出版;
2004年主编《组织学和胚胎学》, 30.0万字, 北京: 科学出版社出版;
2006年主编《组织学胚胎学考点》, 37.6万字, 北京: 科技文献出版社出版;
2009年主编《组织学胚胎学导学与应试指南》, 30.9万字, 北京: 科技文献出版社出版;
2010年主编《组织学和胚胎学(全国医药高等学校规划教材)》, 25.0万字, 北京: 科学出版社出版;
2011年主编《组织学与胚胎学实验指导》, 11.5万字, 北京: 中国医药科技出版社出版;
2012年主编《A Laboratory Manual of Histology and Embryology, 组织学与胚胎学实验指导(英文版)》, 19.4万字, 北京: 人民卫生出版社;
2014年主编《组织学与胚胎学实验指导》,14.6万字,北京:人民卫生出版社出版;
2015年主编临床医学《组织学与胚胎学(数字化规划教材)》,国家电子书包,北京: 人民军医出版社出版;
2017年主编临床医学《组织学与胚胎学(第9版全国规划教材)》, 北京: 人民卫生出版社出版。

 

2012年副主编《再生医学(全国高等医学院校教材)》, 北京: 人民卫生出版社出版;
2013年副主编5年制临床医学《组织学与胚胎学(第8版全国规划教材)》, 北京: 人民卫生出版社出版;
2015年副主编8年制临床医学《组织学与胚胎学(第3版全国规划教材)》, 北京: 人民卫生出版社出版;
2017年副主编《再生医学(全国高等医学院校教材)》, 北京: 人民卫生出版社出版。

 

获奖及荣誉:

2017年,“督脉经穴电针通过NT-3介导移植的成体干细胞修复脊髓损伤的研究”,获广东省自然科学奖二等奖。证书号:A04-2-01-R01;奖励日期:2018年2月;排名: 第1获奖人。

2001年,“脊髓可塑性变化的神经营养活性物质系列研究”,获广东省自然科学优秀学术论文奖二等奖。证书号: 022;奖励日期: 2001年12月;排名: 第1获奖人。

1998年,“吗啡促进脊髓可塑性变化的研究”,获国家卫生部科技进步奖三等奖。证书号: 98303801;奖励日期: 1998年9月;排名: 第1获奖人。

 

学术兼职:

中国解剖学会常务理事;广东省解剖学会名誉理事长;广东省人体生物组织工程学会副理事长;广东省细胞生物学会副理事长;中国神经科学学会神经干细胞和组织工程分会副主任;江苏省神经再生协同创新中心核心成员;四川省干细胞应用研究中心重点实验室学术委员会委员;河南省高等学校组织再生重点开放实验室学术委员会委员;解剖学研究杂志副主编。


发表论文:

  1. Wu GH, Shi HJ, Che MT, Huang MY, Wei QS, Feng B, Ma YH, Wang LJ, Jiang B, Wang YQ, Han I, Ling EA, Zeng X*, Zeng YS*. Recovery of paralyzed limb motor function in canine with complete spinal cord injury following implantation of MSC-derived neural network tissue. Biomaterials, 2018, 181:15-34.
  2. Lai BQ, Feng B, Che MT, Wang LJ, Cai S, Huang MY, Gu HY, Jiang B, Ling EA, Li M, Zeng X*, Zeng YS*. A modular assembly of spinal cord-like tissue endows targeted tissue repair in the transected spinal cord. Advanced Science, 2018, 5(9):1800261(1 of 14).
  3. Li G, Che MT, Zeng X, Qiu CX, Feng B, Lai BQ, Shen HY, Ling EA, Zeng YS*. Neurotrophin-3 released from implant of tissue-engineered fibroin scaffolds inhibits inflammation, enhances nerve fiber regeneration and improves motor function in canine spinal cord injury. J Biomed Mater Res A, 2018, 106(8):2158-2170.
  4. Ma YH, Zeng X*, Qiu XC, Wei QS, Che MT, Ding Y, Liu Z, Wu GH, Sun JH, Pang M, Rong LM, Liu B, Aljuboori Z, Han I, Ling EA, Zeng YS*. Perineurium-like sheath derived from long-term surviving mesenchymal stem cells confers nerve protection to the injured spinal cord. Biomaterials, 2018, 160:37-55.
  5. Zou JL, Liu S, Sun JH, Yang WH, Xu YW, Rao ZL, Jiang B, Zhu QT, Liu XL, Wu JL, Chang C, Mao HQ, Ling EA, Quan DP*, Zeng YS*. Peripheral nerve-derived matrix hydrogel promotes remyelination and inhibits synapse formation. Advanced Functional Materials, 2018, 1705739 (1 of 12).
  6. Wang JM, Qu ZQ, Wu JL, Chung P, Zeng YS*. Mitochondrial protective and anti-apoptosis effects of Rhodiola Crenulata extract on hippocampal neurons in a rat model of Alzheimer’s disease. Neural Regen Res, 2017, 12(12):2025-2034.
  7. Zhang YT, Jin H, Wang JH, Wen LY, Yang Y, Ruan JW, Zhang SX, Ling EA, Ding Y*, Zeng YS*. Tail nerve electrical stimulation and electro-acupuncture can protect spinal motor neurons and alleviate muscle atrophy after spinal cord transection in rats. Neural Plast, 2017, 2017:7351238 (1 of 11).
  8. Yang XH, Ding Y, Li W, Zhang RY, Wu JL, Ling EA, Wu W, Zeng YS*. Effects of electroacupuncture and the RXR signaling pathway on oligodendrocyte differentiation in the demyelinated spinal cord of rats. Acupunct Med, 2017, 35(2):122-132.
  9. Lai BQ, Che MT, Du BL, Zeng X, Ma YM, Feng B, Qiu XC, Zhang K, Liu S, Shen HY, Wu JL, Ling EA, Zeng YS*. Transplantation of tissue engineering neural network and formation of neuronal relay into the transected rat spinal cord. Biomaterials, 2016, 109:40-54.
  10. Lin XY, Lai BQ, Zeng X, Che MT, Ling EA, Wu W, Zeng YS*. Cell transplantation and neuroengineering approach for spinal cord injury treatment: A summary of current laboratory findings and review of literature (an invited review). Cell Transplant, 2016, 25(8):1425-1438.
  11. Zeng X, Ma YH, Chen YF, Qiu XC, Wu JL, Ling EA, Zeng YS*. Autocrine fibronectin from differentiating mesenchymal stem cells induces the neurite elongation in vitro and promotes nerve fiber regeneration in transected spinal cord injury. J Biomed Mater Res A, 2016, 104(8):1902-1911.
  12. Li G, Che MT, Zhang K, Qin LN, Zhang YT, Chen RQ, Rong LM, Liu S, Ding Y, Shen HY, Long SM, Wu JL, Ling EA, Zeng YS*. Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury. Biomaterials, 2016, 83:233-248.
  13. Lai BQ, Qiu XC, Zhang K, Zhang RY, Jin H, Li G, Shen HY, Wu JL, Ling EA, Zeng YS*. Cholera toxin B subunit shows transneuronal tracing after injection in an injured sciatic nerve. PLoS One, 2015, 10(12):e0144030 (1 of 13).
  14. Qiu XC, Jin H, Zhang RY, Ding Y, Zeng X, Lai BQ, Ling EA, Wu JL, Zeng YS*. Donor mesenchymal stem cell-derived neural-like cells transdifferentiate into myelin-forming cells and promote axon regeneration in rat spinal cord transection. Stem Cell Res Ther, 2015, 6(1):105 (1 of 17).
  15. Zou J, Hu B, Arpag S, Yan Q, Hamilton A, Zeng YS, Vanoye CG, Li J. Reactivation of lysosomal Ca2+ efflux rescues abnormal lysosomal storage in FIG4-deficient cells. J Neurosci, 2015, 35(17):6801-6812.
  16. Ding Y, Zhang RY, He B, Liu Z, Zhang K, Ruan JW*, Ling EA, Wu JL, Zeng YS*. Combination of electroacupuncture and grafted mesenchymal stem cells overexpressing TrkC improves remyelination and function in demyelinated spinal cord of rats. Scientific Reports, 2015, 5:9133 (1 of 14).
  17. Zeng X, Qiu XC, Ma YH, Duan JJ, Chen YF, Gu HY, Wang JM, Ling EA, Wu JL, Wu WT, Zeng YS*. Integration of donor mesenchymal stem cell-derived neuron-like cells into host neural network after rat spinal cord transection. Biomaterials, 2015, 53:184-201.
  18. Du BL, Zeng X, Ma YH, Lai BQ, Wang JM, Ling EA, Wu JL, Zeng YS*. Graft of the gelatin sponge scaffold containing genetically modified neural stem cells promotes cell differentiation, axon regeneration and functional recovery in rat with spinal cord transection. J Biomed Mater Res A, 2015, 103(4):1533-1545.
  19. Liu Z, He B, Zhang RY, Zhang K, Ding Y, Ruan JW, Ling EA, Wu JL, Zeng YS*. Electroacupuncture promotes the differentiation of transplanted bone marrow mesenchymal stem cells pre-induced with neurotrophin-3 and retinoic acid into oligodendrocyte-like cells in demyelinated spinal cord of rats. Cell Transplant, 2015, 24(7):1265-1281.
  20. Guo JS*, Qian CH, Ling EA, Zeng YS*. Nanofiber scaffolds for treatment of spinal cord injury. Curr Med Chem, 2014, 21(37):4282-4289.
  21. Zhang K, Liu Z, Li G, Lai BQ, Qin LN, Ding Y, Ruan JW, Zhang SX, Zeng YS*. Electro-acupuncture promotes the survival and differentiation of transplanted bone marrow mesenchymal stem cells pre-induced with neurotrophin-3 and retinoic acid in gelatin sponge scaffold after rat spinal cord transection. Stem Cell Rev Rep, 2014, 10(4):612-625.
  22. Du BL, Zeng CG, Zhang W, Quan DP, Ling EA, Zeng YS*. A comparative study of gelatin sponge scaffolds and PLGA scaffolds transplanted to completely transected spinal cord of rat. J Biomed Mater Res A, 2014, 102(6):1715-1725.
  23. Lai BQ, Wang JM, Ling EA, Wu JL, Zeng YS*. Graft of a tissue engineered neural scaffold serves as a promising strategy to restore myelination after rat spinal cord transection. Stem Cells Dev, 2014, 23(8):910-921.
  24. Chen YF, Zeng X, Zhang K, Lai BQ, Ling EA, Zeng YS*. Neurotrophin-3 stimulates migration of mesenchymal stem cells overexpressing TrkC. Curr Med Chem, 2013, 20(24): 3022-3033.
  25. Lai BQ, Wang JW, Duan JJ, Chen YF, Gu HY, Ling EA, Wu JL, Zeng YS*. The integration of NSC-derived and host neural networks after rat spinal cord transection. Biomaterials, 2013, 34(12):2888-2901.
  26. Ding Y, Yan Q, Ruan JW, Zhang YQ, Li WJ, Zeng X, Huang SF, Zhang YJ, Wu JL, Fisher D, Dong H*, Zeng YS*. Electroacupuncture promotes the differentiation of transplanted bone marrow mesenchymal stem cells overexpressing TrkC into neuron-like cells in transected spinal cord of rats. Cell Transplant, 2013, 22(1):65-86.
  27. Li WJ, Li SM, Ding Y, He B, Keegan J, Dong H, Ruan JW*, Zeng YS*. Electro-acupuncture upregulates CGRP expression after rat spinal cord transection. Neurochem Int, 2012, 61(8):1397-1403.
  28. Zhou Y, Qu ZQ, Zeng YS*, Lin YK, Li Y, Chung P, Wong R, Hägg U. Neuroprotective effect of preadministration with Ganoderma lucidum spore on rat hippocampus. Exp Toxicol Pathol, 2012, 64:673-680.
  29. Zhang YQ, He LM, Xing B, Zeng X, Zeng CG, Zhang W, Quan DP, Zeng YS*. Neurotrophin-3 gene modified Schwann cells promote TrkC gene modified mesenchymal stem cells to differentiate into neuron-like cells in PLGA multiple-channel conduit. Cells Tissues Organs, 2012, 199(4):313-322.
  30. Ma YH, Zeng X, Zhang K, Zeng YS*. A new in vitro injury model of mouse neurons induced by mechanical scratching. Neurosci Lett, 2012, 510(1):14-19.
  31. Zhang YJ, Zhang W, Lin CG, Ding Y, Huang SF, Wu JL, Li Y, Dong H, Zeng YS*. Neurotrophin-3 gene modified mesenchymal stem cells promote remyelination and functional recovery in the demyelinated spinal cord of rats. J Neurol Sci, 2012, 313(1-2):64-74.
  32. Qu ZQ, Zhou Y, Zeng YS*, Lin YK, Li Y, Zhong ZQ, Chan WY*. Protective effects of a rhodiola crenulata extract and salidroside on hippocampal neurogenesis against streptozotocin-induced neural injury in the rat. PLoS One, 2012, 7(1):e29641.
  33. Guo JS, Ma YH, Yan Q, Wang LL, Zeng YS*, Wu JL, Li Jun*. Fig4 expression in the nervous system and its protection against abnormal lysosomal accumulation. J Neuropath Exp Neurol, 2012, 71(1):28-39.
  34. Zeng X, Zeng YS*, Ma YH, Lu LY, Du BL, Zhang W, Li Y, Chan WY*. Bone marrow mesenchymal stem cells in a three dimensional gelatin sponge scaffold attenuate inflammation, promote angiogenesis and reduce cavity formation in experimental spinal cord injury. Cell Transplant, 2011, 20(11/12):1881-1899.
  35. Liu Z, Ding Y, Zeng YS*. A new combined therapeutic strategy of Governor Vessel electro-acupuncture and adult stem cell transplantation promotes the recovery of injured spinal cord (an invited review). Curr Med Chem, 2011, 18:5165-5171.
  36. Ding Y, Yan Q, Ruan JW, Zhang YQ, Li WJ, Zeng X, Huang SF, Zhang YJ, Wang S, Dong H, Zeng YS*. Bone marrow mesenchymal stem cells and electro-acupuncture downregulate the inhibitor molecules and promote the axonal regeneration in the transected spinal cord of rats. Cell Transplant, 2011, 20(4):475-491.
  37. Wang JM, Zeng YS*, Wu JL, Li Yan, Teng YD*. Cograft of Schwann cells and neural stem cells overexpressing neurotrophin-3 and TrkC respectively after rat spinal cord transection. Biomaterials, 2011, 32(30):7454-7468.
  38. Du BL, Xiong Y, Zeng CG, He LM, Zhang W, Quan DP, Wu JL, Li Y, Zeng YS*. Transplantation of artificial neural construct partly improved spinal tissue repair and functional recovery in rats with spinal cord transection. Brain Res, 2011, 1400:87-98.
  39. Huang SF, Ding Y, Ruan JW, Zhang W, Wu JL, He B, Zhang YJ, Li Y, Zeng YS*. An experimental electro-acupuncture study in treatment of the rat demyelinated spinal cord injury induced by ethidium bromide. Neurosci Res, 2011,70:294-304.
  40. Yan Q, Ruan JW, Ding Y, Li WJ, Li Y, Zeng YS*. Electro-acupuncture promotes differentiation of mesenchymal stem cells, regeneration of nerve fibers and partial functional recovery after spinal cord injury. Exp Toxicol Pathol, 2011, 63:151-156.
  41. Zhang W, Yan Q, Zeng YS*, Zhang XB, Xiong Y, Wang JM,  Chen SJ, Li Y, Bruce IC, Wu WT*. Implantation of adult bone marrow-derived mesenchymal stem cells transfected with the neurotrophin-3 gene and pretreated with retinoic acid in completely transected spinal cord. Brain Res, 2010, 1358:256-271 (IF: 2.463)
  42. Li WJ, Pan SQ, Zeng YS*, Su BG, Li SM, Ding Y, Li Y, Ruan JW*. Identification of acupuncture-specific proteins in the process of electro-acupuncture after spinal cord injury. Neurosci Res, 2010, 67:307-316.
  43. Zhang YQ, Zeng X, He LM, Ding Y, Li Yan, Zeng YS*. NT-3 gene modified Schwann cells promote TrkC gene modified mesenchymal stem cells to differentiate into neuron-like cells in vitro. Anat Scie Inter, 2010, 85(2):61-67.
  44. Ding Y, Yan Q, Ruan JW, Zhang YQ, Li WJ, Zhang YJ, Li Y, Dong H, Zeng YS*. Electro-acupuncture promotes survival, differentiation of the bone marrow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats. BMC Neurosci, 2009, 10(1):35-47.
  45. Chen QG, Zeng YS*, Qu ZQ, Tang JY, Qin YJ, Chung P, Wong R, Hägg U. The effects of Rhodiola rosea extract on 5-HT level, cell proliferation and quantity of neurons at cerebral hippocampus of depressive rats. Phytomedicine, 2009, 16(9):830-838.
  46. Xiong Y, Zeng YS*, Zeng CG, Du BL , He LM, Quan DP, Zhang W, Wang JM, Wu JL, Li Y, Li J. Synaptic transmission of neural stem cells seeded in 3-dimensional PLGA scaffolds. Biomaterials, 2009, 30: 3711-3722.
  47. Zhang W, Zeng YS*, Wang JM, Ding Y, Li Y, Wu W. Neurotrophin-3 improves retinoic acid-induced neural differentiation of skin-derived precursors through a p75NTR-dependent signaling pathway. Neurosci Res, 2009, 64(2): 170-176.
  48. Qu ZQ, Zhou Y, Zeng YS* , Li Y, Chung P. Pretreatment of Rhodiola Rosea extract can reduce cognitive impairment induced by intracerebroventricular streptozotocin in rats: implication to anti-oxidative and neuroprotective effects. Biomed Environ Sci, 2009, 22(4):318-326.
  49. Tang JYZeng YS*,Peter C,Wong R,Urban H. Effects of Valeriana officinalis extract on rat depression model. Journal of Chinese Clinical Medicine, 2008, 3(7):374-378.
  50. Chen YY,Zhang W,Chen YL,Chen SJ,Dong H,Zeng YS*. Electro-acupuncture improves survival and migration of transplanted neural stem cells in injured spinal cord in rats. Acupunct Electrother Res, 2008, 33( 1-2 ):19-31.
  51. Guo J, Su H, Zeng YS, Liang YX, Wong WM, Ellis-Behnke RG, So KF, Wu WT. Reknitting the injured spinal cord by self-assembling peptide nanofiber scaffold. Nanomedicine, 2007, 3(4):311-321.
  52. Zhang XB, Zeng YS*, Zhang W, Wang JM, Wu JL, Li J. Co-transplantation of neural stem cells and NT-3-overexpressing Schwann cells in transected spinal cord. J Neurotrauma, 2007, 24(12):1863-1877.
  53. Guo JS, Zeng YS*, Li HB, Huang WL, Liu RY, Li XB, Ding Y, Wu LZ, Cai DZ. Cotransplant of neural stem cells and NT-3 gene modified Schwann cells promote the recovery of transected spinal cord injury. Spinal Cord, 2007, 45(1):15-24.
  54. Wang JM, Zeng YS*, Liu RY, Huang WL, Xiong Y, Wang YH, Chen SJ, Teng YD*. Recombinant adenovirus vector-mediated functional expression of neurotropin-3 receptor (TrkC) in neural stem cells. Exp Neurol, 2007, 203(1):123-127.
  55. Zeng YS, Nie JH, Zhang Wei, Chen SJ, Wu WT. Morphine acts via µ-opioid receptors to enhance spinal regeneration and synaptic reconstruction of primary afferent fibers injured by sciatic nerve crush. Brain Res, 2007,1113:108-113.
  56. Zhang W, Zeng YS*, Zhang XB, Wang JM, Zhang W, Chen SJ. Combination of adenoviral vector-mediated neurotrophin-3 gene transfer and retinoic acid promotes adult bone marrow cells to differentiate into neuronal phenotypes. Neurosci Lett, 2006, 408(2):98-103.
  57. Zhang XB, Zeng YS*, Zhang W, Chen YY, Zhang W, Xiong Y, Chen SJ. Synergistic effect of Schwann cells and retinoic acid on the neuronal differentiation and synaptogenesis of hippocampal neural stem cells in vitro. Biomed Environ Sci, 2006, 19(3):219-224.
  58. Zeng YS, Ding Y, Wu LZ, Guo JS, Li HB, Wong WM, Wu WT. Co-transplantation of Schwann cells promotes the survival and differentiation of neural stem cells transplanted into the injured spinal cord. Dev Neurosci, 2005, 27(1):20-26.
  59. Zeng YS, Xu Z C. Co-existence of necrosis and apoptosis in rat hippocampus following transient forebrain ischemia. Neurosci Res, 2000, 37(2):113-125.

 

科研项目研究课题:

1. 神经元中继器修复全横断脊髓损伤的机制研究;国家自然科学基金重大项目课题(81891003),负责人:曾园山,2019

2. 基于干细胞的神经组织模块构建及神经损伤修复研究;国家重点研发计划项目(2017YFA0104700),负责人:丁斐,参与人:曾园山,2017

3. 三维明胶海绵支架材料在非人灵长类脊髓损伤治疗中的转化医学研究;广东省科技发展专项资金项目(2017B020210012),负责人:曾园山,2017

4. 督脉电针促进干细胞源性神经元靶向性生长修复脊髓损伤的机制研究;国家自然科学基金面上项目 (81674064),负责人:曾园山,2016

5. NSC源性神经网络支架移植修复脊髓受损伤神经网络的实验研究;教育部博士学科点优先发展领域项目(201300193035),负责人:曾园山,2013

6. 靶向调节内源性神经干细胞分化促进脊髓损伤后移植神经网络与宿主功能性突触连接;国家自然科学基金联合基金项目(U1301223),负责人:沈慧勇,参与人:曾园山,2013

7. 干细胞源性神经网络支架移植修复脊髓受损伤神经网络的机制研究;国家自然科学基金重点项目(81330028),负责人:曾园山,2013

8. Fig4 基因对神经损伤修复的影响机制研究--延续项目;国家自然科学基金海外学者合作项目(81129019),负责人:李俊/曾园山,2011

9. 督脉电针与基因修饰MSCs移植联合应用治疗多发性硬化的实验研究;国家自然科学基金面上项目 (30973721),负责人:曾园山,2009

10. Fig4 基因对神经损伤修复的影响机制研究;国家自然科学基金海外学者合作项目(30828016),负责人:李俊/曾园山,2008

11. TrkC基因修饰MSCs分化移植促进脊髓损伤修复的机制及应用研究;国家自然科学基金面上项目 (30771143),负责人:曾园山,2007

 

申请和授权专利情况:
1. 曾园山, 李 戈, 孙佳慧。Method for preparation of extracellular matrix-modified decellularized nerve scaffold and use thereof. 美国发明专利,专利申请号: US 15/730,770

2. 曾园山, 李 戈。一种具有趋化功能的生物活性支架的制备和应用获中华人民共和国发明专利, 于2018年5月4日授权,发明专利号: ZL 201510252317.9

3. 曾园山, 李戈, 孙佳慧。一种基质化去细胞神经支架。获中华人民共和国实用新型专利, 于2018年1月30日授权,实用新型专利号: ZL 201621132126.5

4. 曾园山, 曾 湘。一种用于修复脊髓损伤的人工神经网络样导管的构建。获中华人民共和国发明专利, 于2015年11月6日授权,发明专利号: ZL 201010506133.8

5. 曾园山, 李 戈。一种具有趋化功能的生物活性支架的制备和应用。获中华人民共和国实用新型专利, 于2015年12月9日授权,实用新型专利号: ZL 201520319632.4

6. 曾园山, 曾 湘。一种用于修复神经损伤的明胶海绵圆柱体支架的构建。获中华人民共和国发明专利, 于2011年6月8日授权,发明专利号: ZL 200910040176.9

7. 曾园山, 王俊梅。人神经营养素-3受体基因重组腺病毒构建方法。获中华人民共和国发明专利, 于2008年7月16日授权,发明专利号: ZL 200510033569.9