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Precise prediction of phase-separation key
residues by machine learning

Jun Sun1,2,3,4,5,9, Jiale Qu3,4,5,9, Cai Zhao3,4,5,9, Xinyao Zhang3,4,5, Xinyu Liu3,4,5,
Jia Wang3,4,5,6, Chao Wei3,4,5, Xinyi Liu3,4,5, Mulan Wang3,4,5,
Pengguihang Zeng3,4,5, Xiuxiao Tang3,4,5, Xiaoru Ling3,4,5, Li Qing3,4,5,
Shaoshuai Jiang3,4,5, Jiahao Chen3,4,5, Tara S. R. Chen7, Yalan Kuang1,2,
Jinhang Gao1,2, Xiaoxi Zeng1,2, Dongfeng Huang7, Yong Yuan1,2 , Lili Fan 8 ,
Haopeng Yu1,2 & Junjun Ding 1,2,3,4,5,7

Understanding intracellular phase separation is crucial for deciphering tran-
scriptional control, cell fate transitions, anddiseasemechanisms.However, the
key residues, which impact phase separation the most for protein phase
separation function have remained elusive. We develop PSPHunter, which can
precisely predict these key residues basedonmachine learning scheme. In vivo
and in vitro validations demonstrate that truncating just 6 key residues in
GATA3 disrupts phase separation, enhancing tumor cell migration and inhi-
biting growth. Glycine and its motifs are enriched in spacer and key residues,
as revealed by our comprehensive analysis. PSPHunter identifies nearly 80% of
disease-associated phase-separating proteins, with frequent mutated patho-
logical residues like glycine and proline often residing in these key residues.
PSPHunter thus emerges as a crucial tool to uncover key residues, facilitating
insights into phase separation mechanisms governing transcriptional control,
cell fate transitions, and disease development.

Liquid-liquid phase separation (LLPS) is one of the most important
biophysical mechanisms mediating the formation of membraneless
compartments from macromolecules, such as proteins and nucleic
acids1. Over the past decade, LLPS of biomolecules has been estab-
lished as a unifying physical mechanism underlying transcriptional
control2–4, autophagy5, chromatin formation6,7 and chromatin struc-
ture organization8–10.While certain sequence features of proteins, such
as modular interacting domain and low complexity sequences, that
promote LLPS have beenwell studied, how small subset of amino acids

are quantitatively encoded to contribute to phase separation remains
largely unknown11–13, which limits the functional study of phase
separation.

At present, the investigation of phase separation functionalities
involves altering core regions or residues. Considering the strong
correlation between the intrinsically disordered regions (IDRs) of
phase-separating proteins and their phase separation capacity14,15,
truncating IDRs can disrupt protein phase separation16–19. Additionally,
substitutions within charged or multivalent interaction centers,
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prevalent in IDRs20–27 (such as replacing them with amino acids like
alanine), can influence protein phase separation dynamics28,29. How-
ever, these alterations often encompass sizable protein fragments or
multiple residues, inevitably impacting not only their phase separation
properties but also their non-phase separation functions. Thus, the
identification of ‘key residues’ becomes imperative – residues that,
with minimal alteration, exert maximal influence on phase separation
dynamics, enabling precisemodulationwhileminimizing disruption to
non-phase separation functionalities.

Several diseases, including neurodegenerative disorders, skin
diseases, syndactyly syndrome and cancers, are associated with phase
separation30–35, although the exact mechanisms are unknown. Since
pathological mutations can perturb phase separation, the latter can be
a useful biomarker of diseases with complex genetic basis36. However,
without quantifying the contributionof specific amino acids within the
small subset (key residues) to phase separation, it is challenging to
screen the core mutations affecting phase separation from numerous
clinical mutations. Therefore, it is necessary to identify pathological
mutations within key residues that can impact phase separation.

To this end, we developed Phase-Separating Protein Hunter
(PSPHunter), a machine-learning algorithm that can predict phase-
separating proteins and identify key residues by integrating the pro-
tein sequences and functional features from existing resources of
phase-separating proteins. This tool was further used to quantify the
impact of disease-related mutations on phase separation and provide
an analytical framework to dissect the relationship between phase
separation and diseases.

Results
Establishment of PSPHunter for predicting phase-separating
proteins
To identify essential key residues for studying phase separation func-
tions and related disease mechanisms, we initially established
PSPHunter, a machine learning algorithm for predicting phase-
separating proteins (Fig. 1a). We systematically constructed eight dis-
tinct datasets, each designed to meet specific criteria, detailed exten-
sively in Supplementary Fig. 1a, b, Supplementary Table 1, and the
Methods section. These datasets encompassed training sets integrat-
ing mixed-species data namely MixPS237 and MixPS488. Additionally,
we compiled human-specific phase-separating proteins from four
public databases (PhaSepDB37, LLPSDB38, DrLLPS39, PhaSePro40) and
relevant literature sources (Supplementary Fig. 1a). This curation effort
culminated in the compilation of a set comprising 167 human phase-
separating proteins (hPS167).

In order to extract more comprehensive features, we collected
both sequence and functional features that might be attributed to
phase separation (Supplementary Fig. 1b, c). Given the prominence of
the sticker-spacer model as a representative phase separation
mechanism41, we incorporated word2vec feature during the design of
sequence attributes. The word2vec feature quantifies the combina-
tions of short sequence segmentswithinprotein sequences, analogous
to how words encode meaning in human language. We believe that
word2vec features can encode the grammarof phase separationdue to
their exceptional performance in predicting protein phase-separating
capacity (Fig. 1b). We also introduced Position-Specific Scoring Matrix
(PSSM) and Hidden Markov Model (HMM) features to capture protein
evolutionary traits, projected secondary structure, and accessible
residues with relative solvent accessibility for structural insights.
Alongside, our methodology encompassed functional traits, spanning
modifications,mutations, network properties, protein abundance, and
other pertinent characteristics (Supplementary Fig. 1c).

Regarding the sequence features, the phase-separating proteins
are larger, and have more post-translational modification sites, along
with larger IDR, RNA and DNA binding regions compared to the
non–phase-separating proteins (Supplementary Fig. 1d). In addition,

the phase-separating proteins also have a higher proportion of glycine
and proline residues as opposed to hydrophobic residues (Supple-
mentary Fig. 1d). In terms of functional features, phase-separating
proteins are more abundant, have more evolutionarily conserved
features, and have important network characteristics (Supplementary
Fig. 1e). Notably, individual functional features demonstrate predictive
capabilities (Supplementary Fig. 1g). This aligns with our feature
importance analysis, which highlights the pivotal roles of network
properties such as protein closeness in the protein-protein interaction
network and phosphorylation levels in protein post-translational
modifications in the classification process (Supplementary Fig. 1i).
Further analysis of feature correlations reveals a marked internal cor-
relation between sequence and functional features compared to their
intercorrelations (Supplementary Fig. 1h).

By integrating all 123 sequence-based and functional attributes,
their mutual complementarity significantly enhances the classification
performance in predicting phase-separating proteins (Fig. 1b, Supple-
mentary Table 2, Supplementary Table 3). Moreover, based on the
insights gained from feature importance analysis, we found that the
top 60 ranked features yielded comparable results to using the com-
plete feature set (Fig. 1c). Subsequently, we employed this feature-
selected model to predict all human-reviewed proteins, and remark-
ably, the resulting predictions exhibited strong agreement with those
generated using the full feature set (Supplementary Fig. 1j, k), under-
scoring the robustness of our methodology.

Additionally, we conducted a comprehensive systematic assess-
ment involving varying data sizes with different levels of redundancy
(sequence similarity below 30%, 60%, 90%), diverse feature integration
strategies (two-layer stacking, averaging probabilities from different
sub-classifiers, direct combination of all features), and multiple
machine learning methods (support vector machine, naïve Bayesian
classifier, neural network, random forest, light gradient boosting
machine, and extreme gradient boosting) for model construction
(Fig. 1d and Supplementary Fig. 2a–c). Ultimately, we adopted an
approach that maintains sequence similarity among samples in the
training set below 30%, directly integrates sequence and functional
attributes, selects the top 60 importance-ranked features, and utilizes
the random forest algorithm to characterize our final predictive
performance.

In comparison with other prediction models on Inde-
pendent_Test_III_hPS167, PSPHunter demonstrates advantages in the
prediction of phase-separating proteins by integrating multifaceted
information (Fig. 1e, Supplementary Fig. 2d and Supplementary
Table 4). The robustness of the PSPHunter algorithm is also evident in
the mixed-species training datasets MixPS237 and MixPS488 (Sup-
plementary Table 5). Despite the dataset expansion and the incor-
poration of mixed-species information, PSPHunter’s predictive
capabilities show minimal impact. When extending predictions to the
entire proteome, 70% of phase-separating proteins are successfully
replicated (Supplementary Fig. 2e, f). Additionally, the model’s pre-
dictive scores exhibit a notably high correlation (hPS167 vs MixPS488:
PCC =0.774; hPS167 vs MixPS237: PCC=0.701; Supplementary
Fig. 2g). These findings collectively underline PSPHunter’s strength in
predicting phase-separating proteins and its robustness across diverse
datasets.

PSPHunter can predict reliable phase-separating proteome
To assess the phase separation capacity of all human proteins, we
introduced the PSPHunter score, which is derived from PSPHunter’s
phase-separating proteins predictionmodel. To validate the credibility
of the PSPHunter score, we computed its distribution within four-tier
protein datasets and observed that the ranking correlated consistently
with weighted experimental evidence42 (Fig. 1f). Compared to random
proteins, typical phase-separating proteins such as processing bodies,
stress granules, disordered proteins and RNA-binding proteins had a
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significantly higher capacity of phase separation as per the algorithm
(Fig. 1g). All these results indicated that PSPHunter score can be used
for identify potential phase-separating proteins.

To gain a more reliable phase-separating proteome (PSPro-
teome), we optimized the threshold of PSPHunter score by inde-
pendent testing (Fig. 1h). The results suggested that a PSPHunter
score cutoff of 0.82 was proper, as its corresponding specificity was

0.99. Then, a total of 898 phase-separating proteins were screen out,
constituting the PSProteome, out of which 747 were newly predicted
(Supplementary Data File 1). In addition, 78% of the RNA granules
identified by the b-isox method43 was covered by the PSProteome
(Figs. 1i) and 73.5% of the PSProteome was reproduced by
PhaSePred44 and PSPredictor45 (Fig. 1j and Supplementary Fig. 2h).
Functional analysis showed that the PSProteome is enriched in phase
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separation-related processes such as RNA processing and
regulation29,46 (Supplementary Fig. 2i).

To further benchmark PSPHunter’s ability to predict phase-
separating proteins, we established three independent test sets,
including mixed-species, human and non-human datasets. Bench-
marking results demonstrate that our model exhibits better perfor-
mance in the human dataset and yields good performance in
previously unseen datasets from other species (Fig. 2a and Supple-
mentary Table 6). Moreover, we performed in vitro and in vivo
experiments to test our prediction results, by using both fluorescence
labeling and fluorescence recovery after photobleaching (FRAP). We
selected a benchmark dataset comprising 12 proteins with the highest
PSPHunter scores (potential new phase-separating candidates within
PSProteome), along with 5 proteins with the lowest scores (non-phase-
separating protein contrasts) as contrast (Supplementary Data File 1).
The candidate phase-separating proteins formedgreenpuncta in vitro,
and FRAP was consistent with their dynamic nature (Fig. 2b, c and
Supplementary Fig. 3a, d). In contrast, the non-phase-separating
formed irregular shapes and the fluorescence was difficult to recover
after photobleaching. Similar phenomena were observed in the in vivo
experiments as well (Fig. 2b, d and Supplementary Fig. 3b, d). In
addition,we also observedphase separation fusion events both in vitro
and in vivo for the newly identified phase-separating proteins (Sup-
plementary Fig. 3c). Thus, all the selected 12 predicted phase-
separating proteins behave as liquid droplets. Again, quantification
experiments (Fig. 2e) and correlation analysis (Fig. 2f) demonstrate
that PSPHunter accurately measures the phase separation capacity of
proteins.

Taken together, the above results demonstrate that the PSPHun-
ter score can effectively characterize the phase separation capacity of
proteins. PSPHunter, in turn, provides a reliable landscape of phase-
separating proteome.

PSPHunter can accurately predict key residues of phase-
separating proteins
Precision manipulation of phase separation is essential to understand
its role in transcriptional control2–4, cell fate transitions9,10, and disease
development15,32–34,47–50. Therefore, it is crucial to identify the specific
subset of amino acids exerting the most pronounced influence on
phase separation, a classification termed herein as ‘key residues’. Dis-
rupting these residues can impact fundamental properties of protein
phase separation, including the condensates’ liquid-like behavior and
saturation concentration. Amino acid sequences embed the phase
separation-related features13,26,51, suggesting that perturbing the
sequence composition could reveal these key residues.

To systematically screen key residues, we design features to
enhance PSPHunter’s sensitivity to variations in amino acid sequences.
Then we aimed to study the phase separation influence of each amino

acid by introducing a sliding-window strategy (Fig. 3a, Supplementary
Fig. 4a). The full-length proteins were sequentially truncated, and
PSPHunter was employed to compute the phase-separation capacity
for each residue-deleted protein. Lower scores indicated a greater
influence of the residue on phase separation. We identified the resi-
dues that exhibited the most substantial change in phase separation
capacity upon truncation as the key residues (see the ‘Methods’ section
for detailed information). Finally, the contribution of all residues to
phase separation was globally scanned, and the consecutive key resi-
dues that formed valleys were considered as key regions (Fig. 3a).

To validate the reliability of PSPHunter in predicting key resi-
dues of phase-separating proteins, we compared the key regions
identified by PSPHunter with known phase-separating regions
sourced and benchmarked from the PhaSePro database (https://
phasepro.elte.hu)40 (Fig. 3b, Supplementary Data File 2). PSPHunter
reproduced 105 out of 144 known phase-separating regions (Fig. 3b).
In comparison to random fragments, the key regions identified by
PSPHunter were notably closer to the known phase-separation
regions (Fig. 3c). Yang et al. reported that the intrinsically dis-
ordered regions (NTF2) and RNA-binding domain (RRM) of G3BP1
contribute to its phase separation capacity52. The PSPHunter pre-
diction not only reproduced these specific regions but also narrowed
them into a few residues, which may provide greater insights into
how specific amino acids affect phase separation. Furthermore, we
were able to demonstrate that coiled-coil (CC) region of YAP53,
glycine-rich region of TDP4317, the linker connecting the first two SH3
domains of NCK154, SH3 domain of GRB255, and low-complexity
domain of FMRP56 were the key regions of the respective proteins,
which was consistent with previous studies (Fig. 3d and Supple-
mentary Fig. 4b). Identification of the fine key regions of other typical
phase-separating proteins can improve our understanding of their
role in phase separation (Supplementary Fig. 4b). Collectively, it
provides a continuous score for each amino acid, PSPHunter can
identify the key residues for phase separation.

Key residues predict by PSPHunter can be used for precise
manipulation of phase separation
To further experimentally confirmwhether the predicted key residues
can indeed manipulate phase separation, we also designed non-key
residues based on the hypothesis that truncation of the key residues
rather than the non-key residues would impair phase separation
(Fig. 3e and Supplementary Fig. 4d, e). FRAP analysis demonstrated
that truncation of the non-key residues of GATA3 (88–93 aa, Mut-
Control) had little effect on phase separation, while that of only six key
residues of GATA3 (322–327 aa, Mut-Key) significantly reduced the
dynamic behavior of the corresponding puncta both in vitro and
in vivo, along with the decrease in the number of GATA3 puncta
(Fig. 3f–i). Additionally, we conducted an assessment of the saturation

Fig. 1 | Establishment of PSPHunter for predicting phase-separating proteins.
a Scheme of the research route and methods. PSPHunter incorporates sequence
and functional features for phase-separating protein prediction and key residue
identification, enabling exploration of the link between phase separation and dis-
eases. b Feature performance comparison: Sequence and functional features (cyan
and blue, respectively) are compared. Combining these features significantly
improves prediction accuracy (n = 100 datasets). c Model performance evaluation
based on feature importance (n = 100 datasets), considering varying numbers of
selected features. d Violin plots comparing the performance among different
machine learning methods (n = 100 datasets), including support vector machine
(SVM), naïve Bayesian classifier (NB), neural network (NN), random forest (RF), light
gradient boostingmachine (LightGBM), and extreme gradient boosting (XGBoost).
e Comparison of PSPHunter with other representative phase-separating protein
predictors. We randomly extracted 30% of data from the positive samples, and an
equally sized set of negative samples was selected to form the independent test
dataset. Employing this selection strategy, we created 100 distinct independent

test sets. The final evaluation represents the average performance across all sets.
f Violin plots illustrating PSPHunter scores of four-tier protein datasets ranked
based on weighted experimental evidence according to Youn et al., tier1 = 367,
tier2 = 473, tier3 = 426, tier4 = 3111. g PSPHunter score distribution in different
phase separation-related datasets, processing bodies and stress granules (from
Wikipedia, n = 591), disordered proteins (from DisProt, n = 568), and RNA binding
proteins (fromEuRBPDB,n = 1784).hPSPHunter scores in theproteome:Candidate
phase-separating proteins (PSProteome, red) and non-phase-separating proteins
(blue) are identified based on a sequence identity cutoff (n = 898 each). i Overlap
with reference datasets: Overlap between the PSProteome and datasets identified
by the b-isox method (red) and processing bodies/stress granules (cyan) is shown.
jOverlap between the PSProteome and the latest two-phase separation predictors.
Note: All statistical tests used one-sided Wilcoxon tests. Significance levels are:
*P <0.05, **P <0.01, ***P <0.001, ****P <0.0001 (n.s. = not significant). Boxplots
represent the interquartile range (IQR) from Q1 to Q3, with the median as the
middle line. Whiskers extend up to 1.5 times the IQR. Outliers are not shown.

Article https://doi.org/10.1038/s41467-024-46901-9

Nature Communications |         (2024) 15:2662 4

https://phasepro.elte.hu
https://phasepro.elte.hu


concentration for different GATA3 mutants. The truncation of key
residues withinGATA3 necessitates relatively higher concentrations to
form phase separation. Under these elevated concentration condi-
tions, the observed puncta formation is comparatively diminished
(Supplementary Fig. 4f, g). These GATA3 outcomes collectively illus-
trate that key residues play an important role in the capacity of protein
phase separation. Furthermore, the PSPHunter algorithm was applied

successfully to predict the key residues of the core pluripotency factor
OCT49 (truncated 3 residues), SOX2 (truncated 6 residues, Supple-
mentary Fig. 4c, d) and the PcG family protein RYBP10 (truncated 21
residues) in our recent studies.

In summary, thesefindings collectively illustrate that PSPHunter is
capable of identifying residues for precise manipulation of phase
separation.
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Glycine and its motifs are enriched in spacer and key residues
To discover the characteristics of key residues, we constructed the
phase-separating key residues landscape in human PSProteome
(Fig. 4a). We found that the majority of phase-separating proteins
contain 3–4 key regions ranging from21 to 115 amino acids (Fig. 4b and
Supplementary Fig. 5a), and are more likely to localize in IDRs (Fig. 4c)
rather than nucleic acid-binding regions (usually folded domains).
However, nearly one-third of key residues were predicted to be in the
nucleic acid-binding domains, which possess limited independent
phase separation capacity (Fig. 4c, d). This observation highlights the
fact that both disordered and folded domains contribute to phase
separation57.

Previous studies have highlighted the relevance of specific amino
acids to phase separation, including the enrichment of glycine (G) and
proline (P) in phase-separating proteins58–61, along with the crucial role
played by aromatic amino acids in the typical spacer-stickermodel41,62.
To systematically explore the impact of amino acid enrichment on the
formation of liquid-phase structures, we evaluated the prevalence of
20 amino acids within key residues. Our findings confirmed the
enrichment of GP (Fig. 4e, f). Both G and P amino acids predominantly
serve as spacers63, and they are relatively more abundant in phase-
separating proteins (Fig. 4h and Supplementary Fig. 5c). These spacers
are typically found in the intrinsically disordered regions (IDRs) rather
than in the folded regions of phase-separating proteins to facilitate
droplet mobility14,64, which align with our observation (Fig. 4h).

Earlier research has also elucidated the influenceof specific amino
acid motifs within the spacer-sticker model12. In our investigation, we
observed the presence of G motifs in both phase-separating proteins
and key residues (Fig. 4g and Supplementary Fig. 5b), likely due to the
proximity of spacers (Fig. 4j and Supplementary Fig. 5h). However, we
did not detect polyP motifs in key residues. This difference may be
attributed to the unique properties of proline in protein structure and
other relevant factors. Proline exhibits unique structural features58,65

within phase-separating proteins, hindering the formation of conven-
tional secondary structures. Over 80% of proline residues are located
in the coil regions of secondary structures (Supplementary Fig. 5d). In
our previous study9, the experimental results suggest that two seg-
ments of GP-enriched key residues predicted by PSPHunter in the
OCT4 protein are located in the turn or bend regions of IDRs (Sup-
plementary Fig. 5f, g). Truncating these proline residues significantly
impacts the liquid-like behavior OCT4.The disappearance of spacer
such as proline might lead to a loss of relatively stable structures and
causing disruptions in themultivalent interactions, including aromatic
systems66,67.

Regarding to the broader concept “stickers” (aromatic FWY and
RLDM residues41), despite their well-documented significance in
protein phase separation, these amino acids are relatively less
abundant in proteins undergoing phase separation, with their dis-
tribution primarily concentrated in the folded regions of proteins
(Fig. 4i and Supplementary Fig. 5e). Notably, the sticker residues,may
not need to be continuously present (Supplementary Fig. 5h). Even
scattered occurrences in sequences can contribute to phase
separation.

Taken together, we systematically explored key residues within
phase-separating proteins, revealing the significance of glycine and
proline as spacers and their role in promoting protein phase separa-
tion (Fig. 4k) and PSPHunter’s approach uncovered a wider spectrum
of phase-separation mechanisms among key residues.

The pathogenic mutations glycine and proline disrupt phase
separation more significantly than other mutations
Studying the relationship between diseases and phase separation
offers insights into the regulation of phase separation and the
mechanisms of disease15,32–34,47–50. To assess the association between
PSPHunter score and diseases, we computed the distribution of
PSPHunter scores in previously reported diseases related to phase
separation68. The results revealed that, compared to randomly selec-
ted diseases, Mendelian diseases and cancers exhibit significantly
higher PSPHunter scores (Fig. 5a). Disease-related proteins exhibit a
notable enrichment among phase-separating proteins (Fig. 5b).
Remarkably, these proteins constitute nearly 80% of the PSProteome
(Fig. 5c). Given that a single gene can be associated with multiple dis-
eases, our analyses unveil a positive correlation between a protein’s
propensity for phase separation and the number of diseases it is linked
to or the quantity of associated mutations it harbors (Supplementary
Fig. 6a–d). In particular, we collected mutations known to either pro-
mote or inhibit phase separation, such as the introduction of alanine
substitutions inHOXD1332 (associatedwith hereditary synpolydactyly),
the mutation of charged residues to alanine in OCT49, the
phenylalanine-to-alanine mutation in DDX428, and the fusion IDR to
mutated proteins9. The predicted results of PSPHunter show good
agreement with previous reports (Supplementary Fig. 6e–g). These
findings collectively suggest a substantial interconnection between
phase separation caused by pathogenic mutations and disease
etiology.

We further applied PSPHunter to evaluate the phase separation
effects of genetic mutations. 36,413 missense mutations including
33,729 pathological mutations and 2684 neutral variants associated
with PSProteome were collected from a comprehensive database
(HuVarBase69). It shows that phase-separating proteins have more
missense mutations than non-PS proteins (Fig. 5d). In addition, the
phase-separating proteins harbored more pathological mutations
rather than neutral mutations (Fig. 5e and Supplementary Fig. 6h),
suggesting that the former may be responsible for the dysregulated
phase separation. Using PSPHunter, we found that pathological
mutations had a greater effect on protein phase separation capacity
than neutralmutations (Fig. 5f), especially the point mutations of VHL,
ESR1, NANOG and several other proteins (Supplementary Fig. 6i,
Supplementary Data File 3). Therefore, the landscape of pathogenic
mutations impacting phase separation linking these mutations to
phase dysregulation may provide an additional framework for under-
standing the pathological basis of diseases.

To determine which type of mutation is more relevant to phase
separation, we calculated the frequencies of different mutation cate-
gories in disease-related phase-separating proteins, and found that
pathological mutations of GP (5925, 17.6%) to hydrophobic amino

Fig. 2 | PSPHunter canpredict reliable phase-separating proteome. a Evaluation
of PSPHunter model performance across different independent test sets. Among
these, ‘Independent_Test_I’ and ‘Independent_Test_II’ represent test sets compris-
ing a mixture of species sourced from ‘MixPS488’ and ‘MixPS237’, respectively.
Additionally, ‘Independent_Test_III’ encompasses a human-specific dataset
obtained from ‘hPS167’. For further details, refer to the methodology section.
b in vitro and in vivo validation of potential phase-separating proteins. Reddenotes
top-ranked proteins with high PSPHunter scores, indicating their potential as
phase-separating proteins, while blue denotes bottom-ranked proteins with low
PSPHunter scores, serving as negative controls. c, d in vitro (c) and in vivo (d) FRAP
analysis of potential phase- separating proteins. For each protein, we quenched

three spots for statistical analysis of droplet properties (The error bars represent
the standard deviation). The droplets formed by potential phase-separating pro-
teins exhibit rapid recovery from photobleaching, while the negative controls
display limited recovery. e Quantification of puncta for potential phase-separating
and non-phase-separating proteins in vitro and in vivo, n = 3, the boxplots were
drawn from lower quartile (Q1) to upper quartile (Q3), with the middle line
denoting the median, whiskers with maximum 1.5 interquartile range (IQR) and
outliers were not indicated. f Correlation between PSPHunter scores and the
number of puncta in vitro and in vivo experiments, Pearson’s product-moment
correlation coefficient, two-sided.
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standard deviation. iQuantification of puncta numbers for GATA3 and its mutants.
The number of puncta of GATA3 per cell indicates that truncation of control resi-
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significantly decreases. The boxplots were drawn from the lower quartile (Q1) to
the upper quartile (Q3), with the middle line denoting the median, whiskers with a
maximum 1.5 interquartile range (IQR), and outliers did not indicate the number of
puncta (one-sided Wilcoxon test, ****P <0.0001, not significant, denoted as
n.s., n = 3).
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acids were more frequent compared to neutral mutations (Fig. 5g).
This strongly suggested that mutations in GP residues were the most
frequent in phase-separating proteins. In addition, mutations in GP
residues were more likely to locate at key regions (Fig. 5h). Compared
to the frequency of mutations in the random regions, GP mutations
were preferentially located in the key regions (Fig. 5i and Supple-
mentary Fig. 6j), and 80% of them had a significant impact on phase
separation compared to other mutations regardless of location
(Fig. 5j, k, Supplementary Fig. 6k,l, and Supplementary Data File 3).

Taken together, we concluded that pathogenic mutations, speci-
fically those within key residues, impact phase separation capacity,
particularly in the case of GP mutations (Fig. 5l). This may provide
insights into the role of dysregulated phase separation in the devel-
opment of diseases.

Deletion of key residues disrupt the phase separation of GATA3
and promotes the migration and suppresses the growth of
tumor cells
To investigate whethermutations in key residues affect the functionof
cells, we systematically analyze the pathogenic capacity of GATA3
defined by PolyPhen-270, a sequence-basedmethod used to predict the
functional effects of mutations. It shows that the key residues of
GATA3 tend to possess higher pathogenicity and mutation frequency
(Fig. 6a, b). Most of these high-frequent mutations are involved in
breast cancer (Fig. 6c), strongly suggesting that they are closely
associated with the phase separation of GATA3.

We chose the typical breast cancer cell line MCF7 to conduct
further validations. The endogenous GATA3 was first knocked down
based on the Tet-on system (Supplementary Fig. 6o, r). Then these
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cells were transfected with PiggyBac GATA3, control residues
truncated-GATA3 (Mut-Control) or key residues truncated-GATA3
(Mut-Key) for 48 h. Ectopic expression of these proteins in endo-
genous GATA3-knockdowned cells was confirmed by Western Blot
(Supplementary Fig. 6p, q). To create a phase separation-rescued
variant of GATA3, we engineered a fusion of the key residues-
truncated GATA3 with the FUS IDR (referred to Mut+IDR). Upon
expression of this fusion construct, a clear recovery of phase
separation in GATA3 was observed (Supplementary Fig. 6m). Fur-
thermore, fluorescence recovery after photobleaching experiments
indicated that the restored puncta exhibited liquid-like properties
(Supplementary Fig. 6n).

In the CCK8 assay, overexpression of Mut-Key significantly sup-
pressed cell growth compared to the control (P <0.05; Fig. 6d).
Additionally, scratch healing assays revealed a marked increase in
woundclosure in key residue-truncated cells compared to control cells
(Fig. 6e, f). Cell cycle analysis further confirmed this suppressive effect
(P < 0.01; Fig. 6g, h), showing decreased proportions of cells in S and
G2 phases alongside elevated G1 phase cells.

Notably, the G1 to S phase transition significantly regulates cell
proliferation71. Intriguingly, the Mut+IDR group exhibited a distinct
restoration in the proportions of cells in S phase (Fig. 6g, h). This
finding suggests a potential role for GATA3’s phase separation in
modulating G1/S transitions to control cell proliferation. The rescue
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experiments utilizing CCK8 assays and scratch healing assays collec-
tively demonstrate that the restorationof phase separation capabilities
can rescue the corresponding tumor cell phenotype (Fig. 6d–f). This
substantiates the influential role of GATA3’s phase separation in tumor
cell growth.

Collectively, we showed that deleting key residues disrupts
GATA3’s phase separation and affects tumor cell function. Linking
pathogenicmutation with phase separationmight provide insight into
disease research.

Webservices provide tools for prediction of phase-separating
proteins, key residues and pathogenic mutations impacting
phase separation
PSPHunter offers resources of the phase-separating proteome, the
landscape of phase-separating key residues and the landscapeofphase
separating-dysfunction pathogenic mutations, which will help to elu-
cidate the functions of phase-separating proteins and explore the
mechanisms of phase separation in transcriptional control, cell fate
transition and disease development.

We also developed a user-friendly website (http://psphunter.
stemcellding.org/, Fig. 7a) to implement PSPHunter using PHP, Perl-
CGI, JpGraph, and Jmoe. We provide three modules using only protein
sequences as the input to identify putative key residues, predict pro-
tein phase separation capacity and evaluate the phase separation
effect of mutations (Fig. 7b).

Discussion
We have developed PSPHunter, a multi-information fusion-based
machine learning model for predicting phase-separating proteins and
the residues key phase separation to promote the application and
biological discovery. Compared to the first-generation phase-separat-
ing protein predictors72 that were based on small samples and specific
features, PSPHunter harnessed a diverse range of features, including
sequence embeddings, protein evolutionary attributes, functional
features like protein-protein interaction network topology, and post-
translational modifications. This integration of sequence and func-
tional features led to improved performance, highlighting their com-
plementary nature.

Furthermore, of greater significance, we extended the applic-
ability of PSPHunter from protein-level to residue-level analysis by
introducing a sliding window scanning strategy to identify the resi-
dues with the most impact on phase separation. PSPHunter can
minimize the size of fragment that can impact phase separation to six
or fewer residues as opposed to the longer IDRs or prion-like domain.
Applying PSPHunter for the identification of key residues within the
PSProteome, we observed a significant enrichment of glycine (G) and
proline (P) among these key residues, along with the presence of
spacer-sticker patterns. PSPHunter, being an AI model, introduces a
more diverse range of features to describe the attributes of phase-

separating proteins, potentially encoding a broader spectrum of
mechanisms.

In addition, PSPHunter can also evaluate the influenceofmutation
on phase separation, and provide a mechanistic link between phase
separation and pathological mutations. Thus, a map of key residues
that impact phase separation and are associated with disease-related
mutations can be a powerful tool to investigate the molecular
mechanisms underlying these diseases. We also observed a preference
for GP mutations within key residues, which had a notable impact on
phase separation capacity. However, it is important to acknowledge
that further experimental evidence is required to fully validate the
conclusion that pathogenic mutations indeed affect phase separation.

Specifically, the word2vec descriptor is the closest to PSPHunter
in terms of predicting the effectiveness of key residues (Supplemen-
tary Fig. 7a–f), and is based on the premise that the amino acids key
phase-separation may follow a specific syntax. Characterization of the
key residues reveals the diversity of protein phase separation
mechanisms, which could provide insights into how mutations speci-
fically affect phase separation and disease development, including the
discovery of pathological mechanisms and therapeutic targets with
potential clinical implications73–78.

However, validation of predicted key residues is technologically
limited to relatively small experimental sample sizes. Though the
effect of pathologicalmutations on phase separation has been globally
evaluated, we have not established a direct link between the observed
phase separation dysregulation and disease phenotype. The single
mutationusuallyhas limited effect on the capacity of phase separation,
which may obfuscate key mutations in specific proteins. Expansion of
phase-separating protein resources, refined feature characterization,
as well as detailed molecular studies of specific proteins in disease-
appropriate model systems may help overcome these limitations in
the future.

Methods
Datasets of phase-separating proteins
Given the scarcity of resources on phase-separating (PS) proteins and
the complexity in defining phase separation, we aimed to gather data
comprehensively. Initially, we collected phase-separating proteins
from various sources, including PhaSepDB37, LLPSDB38, DrLLPS39 and
PhaSePro40 (Supplementary Fig. 1a, Supplementary Data File 4). We
manually retrieved scaffold proteins pivotal in phase separation, ser-
ving as primary components undergoing liquid-liquid phase separa-
tion either independently or in conjunction with co-scaffolds. This
aggregation yielded 488 phase-separating proteins across 47 species,
referred to as MixPS488. Our secondary objective was twofold: to
conduct methodological comparisons and to gauge the impact of
dataset size. From PhaSepDB. we collected 237 PS-Self proteins (pro-
teins that canundergo self-assembling PS in vitro) spanning42 species,
termed MixPS237. Additionally, we specifically curated a dataset

Fig. 5 | Thepathogenicmutations glycine andproline disrupt phase separation
more significantly than other mutations. a Proteins associated with cancer and
Mendelian diseases tend to have higher PSPHunter scores (one-sided Wilcoxon
test, ****P <0.0001, Cancer = 3999, Mendelian disease = 4498, Random=3000,
All = 20,150). b Overlap between phase-separating proteins and different types of
diseases. c Nearly 80% of phase-separating proteins are disease-related (one-sided
Student’s t-test, ***P <0.001; Random, n = 1000). d Phase-separating proteins have
significantly more missense mutations (one-sided Wilcoxon test, ****P <0.0001;
PSProteome = 871; NonPS= 801;). e Phase-separating proteins have significantly
more pathogenicmutations compared to the NonPS, with no differences in neutral
mutations (one-sided Wilcoxon test, n.s. no significance, ****P <0.0001; PSPro-
teome = 891; NonPS = 891). f Pathogenic mutations have more impact on phase
separation capacity than neutral mutations (one-sided Wilcoxon test,
****P <0.0001; pathogenic = 684; neutral = 2684). g Heatmap showing that the
mutations from GP to hydrophobic are the most frequent mutations in phase-

separating proteins.hBar plot showing thatGP ismore likely to locate at key region
(average mutations per residue). i Compare to the random regions which have the
same length as the corresponding key region, the pathogenic mutations of GP are
preferentially located at the key residues. j Boxplot showing that mutations in the
key region have more impact on protein phase separation capacity (one-sided
Wilcoxon test, ****P <0.0001; KeyRegion = 4737; NotKeyRegion = 28,992).
k Pathogenic mutations of GP in key residues have more impact on phase separa-
tion capacity than other mutations also within key residues (one-sided Wilcoxon
test, ****P <0.0001; GlyPro = 1207; NotGlyPro = 3530). l Model showing that
pathogenicmutations of GP occurred in key region aremore deleterious to protein
phase separation capacity. Note: The boxplots depict the interquartile range (IQR)
from the lower quartile (Q1) to the upper quartile (Q3). The median is indicated by
the middle line within the box and Whiskers extend up to 1.5 times the IQR from
the box.
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focused on human-specific phase-separating proteins. Integrating the
latest literature findings, we constructed hPS167, comprising 167
human phase separation scaffold proteins.

Datasets of non-phase-separating proteins
Given our collection of PS proteins from47 organisms, we assembled
corresponding proteomes from the Swiss-Prot database to serve as
background proteins. To minimize data redundancy, we specifically
selected 7 organisms with at least 10 recorded instances of PS pro-
teins in our datasets (Homo sapiens, Saccharomyces cerevisiae,
Drosophila melanogaster, Caenorhabditis elegans, Mus musculus,
Xenopus laevis, Schizosaccharomyces pombe). Subsequently, pro-
tein sequences documented in MixPS488, MixPS237, and hPS167
datasets were excluded. As phase separation is deemed to be driven

by multivalent interactions between multiple folded domains or
disordered domains, we extracted single-domain proteins from
background proteins as negative candidates, utilizing PfamScan79

against the Pfam-A database. The remaining proteins underwent
blastclust algorithm80 analysis with a sequence identity threshold set
at 0.3 to diminish sequence similarity. Ultimately, 16851 proteins,
meeting the quality control criteria, constituted the non-phase-
separating (non-PS16851) protein set.

Additionally, we developed a human-specific dataset of non-
phase-separating proteins by using UniProt81 database keywords
‘human’ and filter criterion ‘Reviewed’, excluding hPS167. Further
refining these single-domain proteins based on a pairwise sequence
identity of less than 30%, yielded a subset of 5754 proteins (non-
hPS5754).
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Fig. 6 | Deletion of key residues disrupt the phase separation of GATA3 and
promotes the migration and suppresses the growth of tumor cells.
a Pathogenic probability of GATA3 defined by PolyPhen2, a sequence-based
method used to predict the functional effects of mutations. It shows that the key
regions of GATA3 tend to possess higher pathogenicity. b Bar plot showing that
most of the mutations occur in the end of the GATA3. cMost of the high-frequent
mutations are involved in breast cancer. d Cell viability was reduced by over-
expression of key residues truncated-GATA3 in MCF7 cells (n = 3 biologically
independent experiments, same as f, h). Line in purple denotes overexpression key
residues truncatedGATA3, line in bluedenotes overexpression the control residues

truncated GATA3, line in yellow denotes the the overexpression of the phase
separation-rescued variant of GATA3, and line in grey denotes overexpression the
wild typeGATA3. e, f Effect of GATA3 onMCF7 cellmigration. Representative result
of scratch healing assay (e) and statistical analysis of scratch healing assay (f).
g, h Illustrative outcomes of cell cycle analysis (g) and the corresponding dis-
tribution (h) of MCF7 cells across the G1, S, and G2/M phases. Note: All statistical
tests were one-sided Wilcoxon tests. Significance levels are indicated by asterisks:
*P <0.05; **P <0.01; ***P <0.001; ****P <0.0001 (not significant, denoted as n.s.).
The error bars represent the standard deviation.
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Construction of training and testing datasets
The phase-separating proteins within the Mix-PS488, Mix-PS237, and
hPS167 datasets underwent further refinement by limiting sequence
similarity between any twoproteins to below30%, resulting in 379, 172,
and 135 positive samples, respectively. To generate negative samples,
an equal number of proteins were randomly selected from non-
PS16851 and non-hPS5754 to ensure species specificity. This iterative
processwas repeated 100 times. Subsequently, the paired positive and
negative samples were divided into training (70%) and independent
testing (30%) datasets, resulting in 100 training datasets and 100
testing datasets. This procedure led to the creation of Training data-
sets for Training_I_MixPS488, Training_II_MixPS237, and Trai-
ning_III_hPS167. Correspondingly, the independent test datasets
comprised Independent_Test_I_MixPS488, Independent_Test_II_-
MixPS237, and Independent_Test_III_hPS167. Additionally, human
proteins were excluded from the MixPS488 and MixPS237 datasets to
construct a non-human test set, namely Independent_Test_IV_NonHu-
man_MixPS237 and Independent_Test_V_NonHuman_MixPS488. The
final evaluationon the independent testdataset represents the average
performance across these 100 sets of data.

Overview of the PSPHunter algorithm
In our previous works, we developed a series of algorithms to predict
functionally important residues by combining machine learning- and
template-based strategies82,83. Here, this framework was extended to
the prediction of phase-separating proteins and key residues. To
construct PSPHunter (Fig. 1a), we characterized each protein using 4
groups of sequence-based descriptors including amino acid compo-
sition, evolutionary conservation, predicted functional site annota-
tions, and word embedding vectors. Additionally, we implemented 2
groups of functional features including protein annotation informa-
tion and network properties. Based on the complementarity of
sequence attributes and functional attributes, we constructed a

machine learning-based model for phase-separating protein predic-
tion. In addition, by elaborating on the sensitivity of word2vec feature
to sequence changes in response to phase separation variations, we
aim to convey that the feature of word2vec can capture subtle
alterations in the protein sequence, which may correspond to key
residues responsible for key the phase separation.

Amino acid composition
According to Quiroz’s research about how intrinsically disordered
protein encoded phase behavior84–86, we classified each amino acid
into categories of polar amino acids (N, Q, S, T), charged amino acids
(R,K,D, E), hydrophobic amino acids (L, A, V, I, F, Y,M,H,W,C).G andP
are placed into a separate category given their unusual structure in
triggering phase separation. In this study, we calculated two features
to represent residue composition. Thefirst feature is the percentage of
all residues in each category to the total number of amino acids. The
second feature is the percentage of the consecutive two amino acids.
Specifically, every two consecutive amino acids are regarded as a unit
and the category information was further assigned to the unit. Then
the percentages of doublet categories such as polar-polar, polar-
charge were calculated to represent the second residue composition
feature. Collectively, we generated a 20-dimensional vector to repre-
sent the residue composition feature.

Evolutionary conservation
Evolutionary conservation features consist of three parts: PSSM, dis-
tribution of residue conservation score, and HMM profile. PSSM, also
known as Position-Specific Scoring Matrices, is a sequence profile
comprising the evolutionary information of a protein sequence. In
order to construct this profile, a search against the NR (Non-Redun-
dant) database from NCBI was conducted for each query, employing
the PSI-BLAST program87 (v 2.2.31+) with the parameters (j = 3 and
e =0.001). By following this procedure, a substitution frequency
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matrix was obtained, representing the likelihood of amino acid sub-
stitutions at each position among the 20 different amino acid types.

To characterize each protein, a Z-score transformation was initi-
ally applied to each row of the matrix. Subsequently, for each column,
the average score for each amino acid was computed. As a result, the
entire matrix was condensed into a 20-dimensional vector that
encapsulates the evolutionary properties of each residue type. This
vector was then utilized to summarize the average scores based on the
categories of polar, charged, hydrophobic, and GP residues. Ulti-
mately, to represent each protein, a concise 4-dimensional vector was
generated, which encapsulates the summarized information from the
aforementioned categories.

In addition to PSSM, we implemented relative entropy88 gener-
ated based on the output by PSI-BLAST. Each residue of the query
sequence obtained a conservation score that could characteristic its
evolutionary signature. To represent the distribution of conservation
score for each protein, we calculated 5 statistical characteristics
includingmaximum,minimum,first quartile, second quartile and third
quartile. The 5-dimensional vector was therefore used to represent the
residue conservation score.

The HMM profile, specifically referred to as a profile hidden
Markov model (HMM), is a powerful tool for elucidating the distant
homologous relationships that exist among proteins. In our study, we
adopted the HHblits89 program (v 2.0.16) with default parameters to
generate the HMM profile. This program facilitated a comprehensive
search of the query protein against the UniProt20 database. Similar to
the generation of the PSSM profile, the HMM profile of each protein
was first Z-score normalized by row and then averaged by column,
which would result in a 20-dimensional vector in response to each
residue. This 20-dimensional vector was further condensed to 4 by
summing the average scores according to residue categories of polar,
charge, hydrophobic and GP.

Predicted functional site annotations
Sequence-derived functional features can be used to reflect the func-
tional preference of a protein, and the intrinsically disorder region and
protein post-modification had been approved in relation to phase
separation. In the current study, the secondary structure states of
residues and the accessible residues with relative solvent accessibility
greater than 20% were assigned by the SPIDER2 program90. The dis-
ordered residueswere identifiedusing the SPINE-Dprogram91 (v 2.0.0).
RNA and DNA binding residues were predicted by SNBRfinder92. For
each sequence, we computed the percentages of helix residues, sheet
residues, coil residues, accessible residues, disordered residues, RNA
binding residues and DNA binding residues. We adopted GPS93–96, a
comprehensive PTM predictor, to extract the all the potential phos-
phorylation site, methylation site, S-nitrosylation site and palmitoyla-
tion site of each protein. Regarding to the predicted mutation
information, we utilized Rhapsody97(v 1.0) to conduct a saturation
mutagenesis of each residue. According to the output of Rhapsody, we
computed the percentages of deleterious and neutral mutations. In
addition, we implemented the protein length to represent the size of
protein. Finally, each protein was represented by a 14-dimensional
vector.

Word embedding vectors
Word embedding is a technique widely used in natural language pro-
cessing and has been applied to computational biology98–100. In this
study,we leveragedword embedding to analyze protein sequences. To
facilitate this analysis, we adopted the word2vec method101, which is a
popular approach for constructing the distributed representations. To
apply word embedding to protein sequences, we treated each protein
sequence as a sentence, and its subsequences were considered as
individual words. By doing so, we aimed to capture the inherent
structure and context within the sequences. The distributed

representations were then constructed using the word2vec method,
which enabled us to generate numerical vectors that encode the
semantic properties of each word (subsequence) in the protein
sequences.

Generally, training a word embedding model typically requires a
corpus, which serves as the basis for capturing the relationships
between words. In our research, we selected the corpus by testing two
datasets, namely PS135 and SwissProt, which provided a diverse range
of protein sequences for analysis. Following the recommendation of
previous studies102, each protein sequence was transformed into three
sequences that were composed of nonoverlapping 3-grams. To
implement the word2vec method, we adopted the Gensim package
(https://radimrehurek.com/gensim/) and employed a bag-of-words
model. Several parameters were set to ensure optimal performance.
The maximum distance between the current and predicted words was
set to 70, while the dimensionality of word vectors was set to 60 based
on the parameter selection using the PS135 dataset (Supplementary
Fig. 1f). Consequently, each protein was represented by a 60-
dimensional vector.

Protein annotation information
In this section, we utilized the experimental validated PTM and
mutation information to annotate each protein. We downloaded four
types of post-modification information including phosphorylation,
acetylation, ubiquitination and methylation from PhosphoSitePlus103

database. The PTM frequency of each modification was defined as the
number of annotated sites divided by the protein sequence length.We
extracted the mutation information from the HuVarBase69 database
which is a comprehensive database integrating resources of 1000
Genomes, ClinVar, COSMIC, Humsavar and SwissVar. By searching
with uniport ID of each protein, we finally obtained 774,863 variants
from 18,318 proteins. Among the variants 702,048 are disease causing
and 72,815 are neutral variants. The protein expression abundance
information was extracted from PAXdb104 (2017, organ: WHOLE_-
ORGANISM). The protein age of each query was inferred using phy-
logenetic analysis and extracted from ProteinHistorian, in which we
selected ‘PPODv4_Jaccard_families’ as the protein family database and
‘Wagner parsimony’ as the ancestral reconstruction algorithm105. The
essential gene list including 1,216 genes is the consensus results gen-
erated by the genome-wide single-guide RNA screening106 and the
haploid gene-trap screening107. The housekeeping gene list consists of
8,874 genes expressed in all tissues108. Collectively, each protein was
denoted by a 11-dimensional vector from an evolutionary perspective.

Network properties
Because phase-separating proteins generally have similar biological
functions, these proteins would be expected to be densely located in
protein-protein interaction (PPI) networks. Based on this assumption,
we established networks by using the PPIs from theHIPPIE database109.
Based on the complete PPI networks, we calculated four generic
properties, which comprised degree, betweenness, clustering coeffi-
cient, average neighbor degree.

Classification model
After extracting the above features, we developed models to predict
phase-separating proteins. In this work, we evaluated six types of ma
Rhapsodychine learning algorithms, including support vectormachine
(SVM), naïve Bayesian classifier (NB), neural network (NN), random
forest (RF), light gradient boosting machine (LightGBM), and extreme
gradient boosting (XGBoost). All these algorithms were implemented
using the scikit-learn package110 (v 1.2.0). The parameters c and g of the
radial basis function were set to 2 and 0.125, respectively, in SVM, and
the number of trees was set to 500 in RF. Other parameters were set to
the default in the implementation process. To establish the final
model, we integrated the multifaceted features by testing three types
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of ensemble strategies, including the average of the probability scores
from the first layer, the direct integration of different features into a
single model, and the two-layer stacking model. By comparing the
performance of different ensemble strategies (Supplementary
Fig. 2a–c), the direct integration model based on random forest was
finally selected.

To evaluate the predictive performance, 5-fold cross-validation
was conducted on the primary dataset. The target dataset was initi-
ally divided into 5 subsets, each containing an equal number of
proteins. During each cross-validation iteration, one subset was
employed as the test set, while the remaining subsets served as the
training set. This process was repeated 5 times, with each subset
serving as the test set once, enabling the calculation of the average
performance.

Evaluation indicators
The primarymeasure of prediction performancewas assessed using the
area under the receiver operating characteristic curve (AUC). The AUC
quantifies the classifier’s ability todistinguishbetween truepositives and
false positives at various classification thresholds. Additionally, other
well-established metrics, including recall, precision, F1-score, accuracy
(ACC), and Matthews correlation coefficient (MCC), were computed as
follows: TP, TN, FP, and FN represent the numbers of true positives, true
negatives, false positives, and false negatives, respectively.

Recall =
TP

TP+FN
ð1Þ

Precision =
TP

TP+FP
ð2Þ

F1� score=
2×Recall × Precision
Recall + Precision

ð3Þ

Accuracy=
TP+TN

TP+ FN+TN+FP
ð4Þ

MCC =
TP×TN� FP× FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTP+FNÞðTP+FPÞðTN+FPÞðTN+FNÞ
p ð5Þ

Feature importance and feature selection
Feature importances were computed using the fitted ‘feature_-
importances_‘ attribute from the scikit-learn package110. We performed
feature selection on all 123 sequence and functional features. These
features were then ranked based on their importance value, and we
assessed their contribution by progressively increasing the number of
features. We observed that the model’s performance reached its best
when the number of features reached 60, with no significant
improvements upon further increase. Consequently, we settled on 60
features for the final model.

Key residue detection
In this study, we employed three distinct strategies for screening
these key residues. Specifically, thefirst strategy is designing features
to make the PSPHunter sensitive to amino acid variations in the
sequence. Initially, we incorporate word2vec features, which encode
the combination patterns of short sequence fragments. Furthermore,
we compress and integrate residue-level features such as PSSM and
HMM, enabling the transmission of sequence variations at the amino
acid level to the protein scale. These residue-level descriptions
enhance the sensitivity of PSPHunter in detecting sequence varia-
tions that are associatedwith theprotein’s phase separation capacity.
The second strategy aimed to study the influence of each amino acid

on the capability of the protein to undergo phase separation. We
achieved this by treating 20 consecutive amino acids as a unit to
represent a given residue at its middle position (Fig. 3a, Supple-
mentary Fig. 4a). We selected a truncated-unit value of 20 amino
acids basedon the average length of phase-separationproteins (~600
amino acids). This bin size is 1/30, which we consider relatively rea-
sonable. It is worth noting that theoretically, a larger value for this
parameter leads to a greater variation in the delta PSPHunter score.
Users have the flexibility to adjust this parameter in our standalone
version.

Subsequently, we employed PSPHunter to calculate the phase-
separation probability for each unit-deleted protein. After evaluating
the effect of all truncation possibilities, we can obtain a curve of the
effect of each residue (excluding 10 residues at each end) in response
to each truncation. The residues with the greater deviation from
the average phase separation capacity are considered as the key
residues.

Key region detection
The consecutive key residues are treated as key region (Supplemen-
tary Fig. 4a). To balance PSPHunter’s sensitivity in identifying key
residues, we aim to capture consecutive amino acids with the greatest
impact on phase separation. To achieve this, we have set an empirical
parameter, selecting 20-40 top-ranked key residues as candidates,
aligning with 1-2 times the truncated unit. This balances user con-
venience and prioritizes crucial regions. We next connect consecutive
amino acids in candidates to form key regions. For instance, we kept
the top 1% of the total number of residues when the sequence length is
greater than 2000, 2% when the sequence length is between 1000-
2000, 4% when the sequence length is between 500-1000, and 5%
when the sequence length is less than 500. After that, the retained
residues are attached according to the sequence position which would
further form to key regions.

Other phase separation predictors
PLAAC111, LARKS112, R + Y26, DDX4-like28, catGRANULE113, PScore114 and
CRAPome115 were first-generation phase-separating protein predictors
summarized by a recently review72. Youn et al.42 further utilized these
predictors to analysis the properties of stress granule and P-body
proteomes.We obtained all the predicted probabilities of eachprotein
from its original supplemental information. Additionally, the predicted
results of PhaSePred44 (http://predict.phasep.pro/), MAGS116 (https://
github.com/ekuec/2019_StressGranuleFeatures/) and PSPredictor45

(http://www.pkumdl.cn/PSPredictor/) were obtained from the corre-
sponding web server and GitHub repositories.

Cell lines and culture conditions
The MCF7 cell line was a gift from Dr. Hai Hu (Sun Yat-sen Memorial
Hospital). TheHEK293T cell linewas kindly gifted byDr. JianlongWang
from lcahn School ofMedicine atMount Sinai. HEK293Twere grown in
DMEMmedium (Hyclone, SH30022.01) containing 10%FBS (LONSERA,
S711-001S), andMCF7were grown inRPMI 1640 (Gibco, C11875500BT)
containing 10% FBS (LONSERA, S711-001S). All cells were cultured at
37 °C with 5% CO2.

To establish exogenous expression of GATA3, Mut-Control, Mut-
Key, and Mut+IDR in the MCF7 cell line, achieving levels of expression
similar to endogenous GATA3 in MCF7, we first established an MCF7-
shGATA3 cell line. Endogenous GATA3 expression in this cell line was
silenced using short hairpin RNA (shRNA) delivered via doxycycline
(DOX) treatment. The shRNA oligonucleotides were designed using
the tool available at http://www.broadinstitute.org/rnai/public/gene/
search. The forward primer sequence for shGATA3 is CTAGGCCA
AGAAGTTTAAGGAATATCTCGAGATATTCCTTAAACTTCTTGGCTTTT
TG, and the reverse primer sequence is AATTCAAAAAGCCAAGA
AGTTTAAGGAATATCTCGAGATATTCCTTAAACTTCTTGGC.
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Motif analysis
Motifs of phase-separating proteins and key residues were discovered
by the MEME 5.4.1 server117 with motif size = 6–8 and other parameters
at default.

Functional enrichment analysis
To explore the functional roles of proteins involved in phase separa-
tion, we identified the associated GO terms using Metascape118, in
which ‘Homo sapiens’were selected as the background and all the 898
phase separation proteome were chosen as the input. Then ‘Custom
Analysis’ was adopted to further analysis. The over-represented GO
biological processes, cellular components, molecular functions, and
diseases types were reserved with default parameters.

Protein expression and purification
cDNA encoding the interested proteins were cloned into pET28a
expression vector. The base vector was engineered to include His-tag
followed by EGFP. All expression constructs were sequenced to ensure
sequence identity. For protein expression, plasmids were transformed
into BL21 E.coli (TransGen Biotech, CD601-02) and grown as follows. A
fresh bacterial colony was inoculated into LB media containing kana-
mycin and grown overnight at 37 °C. Then the cells were diluted 1:30 in
300mL LB with freshly added kanamycin and grown at 37 °C for
approximately 5 h to make sure OD600 up to 0.6–0.8. Then IPTG
(Solarbio, I1020-5) was added to 0.3mM and growth continued over-
night at 16 °C for 18 h. Protein purificationwasperformed according to
the instruction of Protein Purification Kit (Cwbio, CW0894S). The
recombinant EGFP fusion proteins were concentrated in Amicon Ultra
30KDa centrifugal filters (Millipore, UFC803024) for use.

In vitro droplet formation
The recombinant EGFP fusion proteins were concentrated and desal-
ted to an appropriate concentration using Amicon Ultra centrifugal
filters (Millipore, UFC803024). And then the interested proteins were
added to droplet formation buffer, which consists of 50mM Tris-HCl
pH 7.5 (Thermo Fisher, 15567-027), 10% glycerol (Sigma, G5516), 1mM
DTT (Sigma, D9163), 10% PEG8000 (Sigma, H-209Z-0T968) and
125mM NaCl (Sigma, S5150). The protein solution was immediately
loaded onto a homemade chamber, and then imaged withmicroscopy
(Nikon Eclipse Ts2R-FL).

Fluorescence recovery after photobleaching (FRAP)
HEK293T stably expressing recombinant EGFP fusion proteins were
cultured in glass bottom dish for 24h. Stable cell lines were obtained
after drug selection. Fluorescence images of EGFP were acquired on a
Nikon A1+ confocal microscope with 488nm laser using a 100x oil-
immersion objective lens (HP Apo TIRF 100xH, 1.49 NA, Nikon). The
fluorescence intensity of bleached cell at each time point was nor-
malized by fluorescence intensity at background region and the
fluorescence intensity of the adjacent unbleached puncta. The images
were analyzed using NIS-Elements software. The inner fluidity of
in vitro droplets was also evaluated by FRAP.

Puncta analysis
To quantify the puncta of in cells, cells were imaged by confocal
microscopy using the same parameters across different groups (GFP-
fused GATA3, control region truncated GFP-fused GATA3 and key
region truncated GFP-fused GATA3). Using Imaris software (Bitplane),
the number of puncta in cells was calculated with the spot module,
respectively.

Protein extraction and western blots
Proteins were extracted in Cytobuster (Merck) at room temperature
for 10min. The proteins were mixed in 5×SDS buffer (Bio-Rad) and
were separated on 12% Bis-Tris gel at 100 V for 90min, and then wet-

transferred to a 0.45 um PVDF membrane (Millipore) in ice-cold
transfer buffer in 300mA for 2 h or in 40V for 12 h. After blocked with
5%BSA in TBS for 1 h at room temperaturewith shaking, themembrane
was incubated with the primary antibody overnight at 4 °C (anti-
GATA3, Rabbit, Monoclonal, ABclonal, Cat. number A19636, Lot
number 4000000115, Dilutions/amounts 1:1000; anti-β-Tubulin, Rab-
bit, Polvclonal, ABclonal, Cat. number AC008, Lot num-
ber 3523022349, Dilutions/amounts 1:200). After washed three times
with TBST for 5min at room temperature, the membrane was incu-
bated with 1:1000 secondary antibodies for 1 h at room temperature.
Afterwashed three timeswith TBST for 5min at roomtemperature, the
membrane was developed with ECL substrate (Thermo Fisher) and
imaged using a CCD camera.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The pre-established model, along with the associated training and
testing datasets of PSPHunter, and the predicted phase separation
probabilities of all human proteins using PSPHunter, are available at
https://github.com/jsun9003/PSPHunter. Uncropped scans of all blots
andgels inFigures, alongwith the relevant rawdata fromeachfigureor
table, are provided in the Supplementary Information/Source Data
file. Source data are provided with this paper.

Code availability
The codes of PSPHunter developed in this study are available at
https://gitsshub.com/jsun9003/PSPHunter, with DOI: 10.5281/
zenodo.10791112.
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