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The PTM profiling of CTCF reveals the
regulation of 3D chromatin structure by
O-GlcNAcylation
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Hebing Chen 10, Jiaguo Zhou5, Chengfang Xu11 , Lili Fan 12 ,
Yi-Liang Miao 13 & Junjun Ding 1,2,3,4,7

CCCTC-binding factor (CTCF), a ubiquitously expressed and highly conserved
protein, is known to play a critical role in chromatin structure. Post-
translational modifications (PTMs) diversify the functions of protein to reg-
ulate numerous cellular processes. However, the effects of PTMs on the
genome-wide binding of CTCF and the organization of three-dimensional (3D)
chromatin structure have not been fully understood. In this study, we
uncovered the PTM profiling of CTCF and demonstrated that CTCF can be
O-GlcNAcylated and arginine methylated. Functionally, we demonstrated that
O-GlcNAcylation inhibits CTCF binding to chromatin.Meanwhile, deficiency of
CTCF O-GlcNAcylation results in the disruption of loop domains and the
alteration of chromatin loops associated with cellular development. Further-
more, the deficiency of CTCF O-GlcNAcylation increases the expression of
developmental genes and negatively regulates maintenance and establish-
ment of stem cell pluripotency. In conclusion, these results provide key
insights into the role of PTMs for the 3D chromatin structure.

The mammalian genome is organized into 3D structures ranging from
compartments, topological associated domains (TADs), and loops1–3.
These structures are highly dynamic during development, and their
disruption could lead to abnormal gene transcription and diseases4,5.
CTCF, a ubiquitously expressed and highly conserved DNA-binding
protein, plays a critical role in chromatin architecture organization6–9.
CTCF has been found to form TADs via cohesin-mediated loop
extrusion3,9–12 and the phase separation of CTCF organizes inter-A
compartment interactions13.

The chromatin binding of CTCF is important for chromatin
structure organization14–16. DNA methylation, RNA binding, and
protein–protein interactions have been reported to play roles in
CTCF binding17–22. However, the mechanisms regulating CTCF
binding to chromatin are not fully understood23–25. PTMs are

essential mechanisms to extend protein functions beyond what is
dictated by gene transcription and to regulate cellular
physiology26,27. Despite the potential diversity of CTCF PTMs28–30,
only a few have been identified, such as acetylation, sumoylation,
poly(ADP-ribosyl)nation, and phosphorylation31–36. To understand
the functional significance of CTCF PTMs, potential PTMs should be
systematically mapped from the N to the C terminal. Furthermore,
previous studies have found that PTMs of CTCF can affect its
chromatin binding in a few loci. For example, the phosphorylation
of CTCF decreases its DNA-binding activity in the rRNA gene locus,
and mutating CTCF at the major phosphorylation sites leads to the
repression of binding to the chicken and human c-myc
promoters37,38. However, the effect of PTMs on the genome-wide
binding of CTCF has not been fully elucidated. Meanwhile, the effect
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of CTCF PTMs on 3D chromatin structure has not been fully
understood.

Here, we uncovered the PTM profiling of CTCF in mouse
embryonic stem cells (mESCs) and showed that CTCF can undergo
O-GlcNAcylation and arginine methylation. To investigate the role of
CTCF O-GlcNAcylation, we mapped 3D chromatin architecture, CTCF
ChIP-seq, chromatin accessibility, and gene expression in the context
of O-GlcNAcylation deficiency. These findings provide information on
the importance of CTCF PTMs in organizing 3D genome structure.

Results
The PTM profiling of CTCF
It has been reported that CTCF can be phosphorylated, acetylated,
sumoylated, and poly (ADP-ribosyl) ated31–34,39,40. Many previously
reported PTMs were identified by candidate-based approach, a
method based on prediction of PTM sites by known databases and
followed by validation38. In addition to the method above, other PTMs
of CTCF have also been identified by the enrichment of interested
PTM, such as the enrichment of phosphorylation by antibody or phos-
tag SDS/PAGE37. However, these strategies have high levels of inherent
biases, which is not conducive to finding new CTCF PTM.

To understand the function of CTCF PTMs, potential PTMs should
be mapped from the N to the C terminal with an unbiased method41.
Hence, wemappedCTCF PTMsunbiasedly and a schematic overview is
shown in Fig. 1a. In brief, CTCF was purified from the lysates of WT
mESCs and separated by SDS-PAGE (Supplementary Fig. 1a). After
coomassie blue staining, the purified protein was analyzed using liquid
chromatography tandemMS (LC–MS/MS), followed by analysis of the
rawMSfiles via Byonic database42. The PTMs can be classified into four
types, amongwhich phosphorylation and acetylation have been found
previously (Fig. 1b; Supplementary Fig. 1b)31,39. Importantly, we
observed CTCF can also be O-GlcNAcylated and arginine methylated,
which has not been reported previously (Fig. 1b). To further confirm
the results, purified CTCF proteins were enriched with the antibodies
of O-GlcNAcylation and arginine methylation, respectively (Fig. 1a).
LC–MS/MS analysis revealed one peptide with amino acids 668-672
(TNQPK) as anO-GlcNAcylated peptide (Fig. 1c, d), while four peptides
as arginine methylated peptides, which showed a mass shift of 14 or
28Da on arginine residue (Supplementary Fig. 1c–f).

Taken together, we performed the PTM profiling of CTCF with an
unbiasedmethod and identified that CTCF can beO-GlcNAcylated and
arginine methylated.

Validation of O-GlcNAcylation and arginine methylation
O-GlcNAc-specific antibody RL2 and succinylated wheat germ agglu-
tinin (sWGA) have high affinity forO-GlcNAcylated proteins. To further
verify the O-GlcNAcylation of CTCF, we purified RL2 and sWGA-bound
proteins from mESCs lysates under denatured condition to disrupt
protein–protein interactions and probed for CTCF using western blot.
Results showed that endogenous CTCF specifically bound to RL2 and
sWGA (Fig. 2a), proving CTCF is O-GlcNAcylated. We reconfirmed the
O-GlcNAcylation of CTCF by purifying CTCF from mESCs lysates and
using western blot with RL2 to recognize O-GlcNAcylated serine and
threonine residues (Fig. 2b). Meanwhile, mutation of the CTCF amino
acid involved in O-GlcNAcylation showed a decreased signal of RL2
(Fig. 2c). We also removed terminal O-linked glycosidic modifications
using β-N-Acetyl-hexosaminidase (β-hex)43 and the O-GlcNAcylation
signal of CTCF was decreased (Fig. 2d). To further confirm the mod-
ification, we extracted ion chromatography. Results showed that the
peakarea ofO-GlcNAcylatedpeptidewas 23,340,846,486 and the peak
area of unmodified peptide was 15,501,338,529. Therefore, the
O-GlcNAcylation exists in 60.09% of CTCF. Since phosphorylation can
also occur at serine or threonine residues, we wanted to determine if
phosphorylation is present at T668. We performed high-throughput
phosphoproteomics and identified approximately 11,000

phosphorylation sites in mESCs. The phosphoproteomic analysis did
not detect phosphorylated signal at T668, indicating a low probability
of phosphorylation modification occurring at this site. Furthermore,
we investigated the distribution of CTCF O-GlcNAcylation across
mammalian tissues. We identified a common pattern of modification,
in which the CTCF O-GlcNAcylation is found in multiple important
tissues (Fig. 2e). Meanwhile, we tested the CTCF O-GlcNAcylation in
mouse embryonic fibroblast (MEF), pre-iPSC, which is a late inter-
mediate reprogramming stage, and mESC, the result showed that the
signal of CTCF O-GlcNAcylation increases with pluripotency (Fig. 2f).

There are three types of arginine methylation, including mono-
methylarginine (MMA), asymmetrical dimethylarginine (ADMA), and
symmetrical dimethylarginine (SDMA)44. To further verify the arginine
methylation of CTCF, we used antibodies of ADMA, SDMA, and MMA
respectively to purify arginine methylated protein under denatured
condition, and probed for CTCF by western blot (Supplementary
Fig. 2a–c). We also purified CTCF and performed western blot of
ADMA, SDMA, and MMA to reconfirm the results (Supplementary
Fig. 2d–f). Moreover, the level of arginine methylation decreased in
response to treatment with the arginine methylation inhibitor, peri-
odate oxidized adenosine (AdOx) (Supplementary Fig. 2g). In conclu-
sion, we demonstrated that CTCF possesses three types of arginine
methylation.

Taken together, we uncovered the PTMs map of CTCF (Fig. 1b)
and demonstrated that CTCF can also be O-GlcNAcylated and arginine
methylated.

The O-GlcNAcylation of CTCF is regulated by OGT
O-GlcNAcylation, an O-β-glycosidic attachment of single
N-acetylglucosamine (GlcNAc) to serine and threonine residues, is
involved in the regulation of diverse cellular processes45. Since in
previous studies, O-GlcNAcylation plays important roles in diverse
aspects of protein functions, such as protein–protein interaction,
protein stability, and enzyme activity46–48. We focused on the regula-
tion mechanism and function of CTCF O-GlcNAcylation.

To investigate the regulation mechanism of CTCF O-GlcNAcyla-
tion, we focused on the process of O-GlcNAcylation. It is reported that
O-GlcNAc transferase (OGT) adds the modification while O-GlcNAcase
(OGA) removes it45. We confirmed interactions of OGT with CTCF
(Fig. 2g). Then we also analyzed the interaction domain of OGT and
CTCFbyZDOCK49 and found theOGT interactswithCTCF in the region
of O-GlcNAcylation (Fig. 2h). Furthermore, we knocked down the Ogt
and found the level of CTCF O-GlcNAcylation was decreased (Fig. 2i).

Taken together, these results show that the O-GlcNAcylation of
CTCF is regulated by OGT.

Deficiency of O-GlcNAcylation enhances chromatin binding
of CTCF
To examine the function of the CTCF O-GlcNAcylation, we used CTCF-
mAID mESCs as donor cells14, and transduced the cells with vector
encoding WT_CTCF or T668A O-GlcNAc-deficient CTCF (MUT_CTCF),
respectively (Fig. 3a). Then, we induced the rapid degradation of
endogenously tagged CTCF using 0.5mM auxin. The clone in which
the expression level of exogenous CTCFwas at a similar level to that of
the endogenous CTCF was collected for further functional experi-
ments (Fig. 3b–d, Supplementary Fig. 3a). After treatment with auxin
for 48 h to replace the endogenous CTCF, the expression of core
pluripotency factors OCT4, SOX2 and NANOG was similar between
WT_CTCF and MUT_CTCF mESCs, and the cells were morphologically
identical and were undifferentiated (Supplementary Fig. 3b, c). We
used these cells to detect the function of O-GlcNAcylation of CTCF in
chromatin binding and 3D chromatin structure.

We firstly investigated the change of CTCF genome-wide binding
in response to the mutation of O-GlcNAcylation (Supplementary
Fig. 3d). To identify specific differences between chromatin binding of
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O-GlcNAc-deficient CTCF (MUT_CTCF) and WT_CTCF, we conducted
the spike-in normalized ChIP-seq50,51, and found that the global chro-
matin binding of O-GlcNAc-deficient CTCF was increased significantly
(Fig. 3e). Consistently, immunoblots showed that chromatin-bound
CTCFwas increased and non-chromatin-boundCTCFwasdecreased in
the MUT_CTCF mESCs (Fig. 3h). The location distribution of the

enhanced peaks showed that enhanced peaks preferentially bound
introns, intergenic regions and insulators (Fig. 3f, Supplementary
Fig. 3e). Since the gain of CTCF occupancy is associated with a gain of
chromatin accessibility, we performed an assay of transposase-
accessible chromatin using high-throughput sequencing (ATAC-seq)
experiments. Results showed that chromatin accessibility was
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Fig. 1 | The PTM profiling of CTCF. a Schematic overview of the identification of
PTMs. b Illustration of the PTM sites of CTCF identified in mESCs. Me mono-
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Supplementary Fig. 1.
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increased on the regions of enhanced peaks between MUT_CTCF and
WT_CTCF (Fig. 3g). Meanwhile, there were more CTCF motifs on the
enhanced peaks, which indicates that there could be more CTCF
proteins binding to CTCF peaks (Supplementary Fig. 3f). Thereafter,
we defined the genes with enhanced peaks located on their promoters
(3000 base pairs upstream of gene transcriptional start sites) as
enhanced CTCF peaks related genes. Gene Ontology (GO) analysis
demonstrated that these genes were highly correlated with develop-
mental process (Fig. 3i, j). To further validate the results, we selected
additional clones of WT_CTCF and MUT_CTCF with consistent

expression levels and found that the results were consistent (Supple-
mentary Fig. 3g, h).

Taken together, these results demonstrate that O-GlcNAcylation
inhibits CTCF binding to chromatin.

Deficiency of CTCF O-GlcNAcylation disturbs a subset of loop
domains
To measure changes in 3D chromatin structure upon mutation of O-
GlcNAcylation, we generatedHi-Cprofiles ofWT_CTCF andMUT_CTCF
mESCs (Supplemental Table 4), which revealed high correlation
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western blot with O-GlcNAc-specific antibody (RL2). c Immunoblot showing the
O-GlcNAcylated signal of WT_CTCF and T668A O-GlcNAc-deficient CTCF. d The
CTCF was purified by immunoprecipitation with Flag antibody inWT_CTCF mESCs
and the O-GlcNAcylated signal of CTCF was decreased when treated with β-N-
Acetyl-hexosaminidase (β-hex) in vitro. e Representative quantifications of CTCF
O-GlcNAcylation from different tissues of mouse. Bands were quantified with
ImageJ and the bandsof the RL2 signalwere normalized to purifiedCTCF to control
for equal loading. Data were presented as mean ± SD (n = 3 biologically indepen-
dent samples). f Representative quantifications of CTCF O-GlcNAcylation from
MEF, pre-iPSC, and mESC. Bands were quantified with ImageJ and the bands of the

RL2 signalwere normalized topurifiedCTCF to control for equal loading. Datawere
presented as mean± SD (n = 3 biologically independent samples). g Validation of
the endogenous interaction betweenOGT andCTCF byOGT (left) and CTCF (right)
antibody-based IP inmESCs. h Predicted protein interaction based on structures of
the mouse OGT and CTCF showing that OGT interacted with CTCF in the region of
O-GlcNAcylation. OGT was in blue, CTCF was in green and the site of CTCF
O-GlcNAcylation was in red. i Quantitative PCR analysis ofOgt expression after the
knockdown of Ogt with 3 pairs of siRNA (left) and the signal of CTCF
O-GlcNAcylation was decreased (right). This experiment was performed three
times, with similar results. Data were presented as mean ± SD (n = 3 biologically
independent samples). p-values by two-tailed t-test, significance levels were indi-
cated by asterisks: **p <0.01; ***p <0.001. All western blot experiments were per-
formed three times, with similar results. Source data are provided as a Source
Data file.
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Fig. 3 | Deficiency of O-GlcNAcylation enhances chromatin binding of CTCF.
a Scheme of the research route and methods in the section on function research.
b Western blot of total cell lysates from CTCF-mAID cells before (lane1) or after
auxin treatment (lane2), WT_CTCF cells, and MUT_CTCF cells after 48h auxin
treatment to detect the expression of CTCF. GADPH was shown as a loading con-
trol. This experiment was performed three times, with similar results. c The relative
expression of Ctcf in WT_CTCF and MUT_CTCF mESCs. Data were presented as
mean ± SD (n = 3 biologically independent samples). p-values by two-tailed t-test,
p =0.08 compared to control. d Immunofluorescence of CTCF in WT_CTCF and
MUT_CTCF. Scale bar was 5μm. This experiment was performed three times, with
similar results. eMAplot of CTCF ChIP-seq showing global change of CTCF binding

affinity to chromatin in MUT_CTCF mESCs versus WT_CTCF mESCs, FDR <0.05.
f The distribution of all peaks (left) and enhanced peaks of O-GlcNAc-deficient
CTCF (right) with indicated genomic features. g Profiling of the chromatin acces-
sibility on enhanced peaks. h Western blot of chromatin-bound CTCF and non-
chromatin-bound CTCF in WT_CTCF and MUT_CTCF mESCs. H3 and GAPDH were
shown as loading control. These experiments were performed three times, with
similar results. iGene ontology (GO) analysis of enhancedO-GlcNAc-deficient CTCF
peaks targeted genes, p-values by Fisher’s Exact test. j Sample of enhanced O-
GlcNAc-deficient CTCF peak targeted genes. See also Supplementary Fig. 3. Source
data are provided as a Source Data file.
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between replicates (Supplementary Fig. 4a). Our WT_CTCF Hi-C
showed a high correlation with ESCs in Bonev et al. (Supplementary
Fig. 4b) and demonstrated similarity at compartments, TADs and
loops52 (Supplementary Fig. 4d–f). Specifically, 7908 and 7975 TADs,
11,207 and 11,140 loops were identified in WT_CTCF and MUT_CTCF
cells respectively, and 7769 TADs and 9931 loops were identified in
Bonev’s data (Supplementary Fig. 4c).

First, we investigated the extent to which O-GlcNAcylation
mutation affects the compartments. The relative contact probability
and contact maps did not show a significant change (Fig. 4a, b). The
compartment states were maintained upon mutation of
O-GlcNAcylation (Fig. 4c). Overall, the mutation of CTCF
O-GlcNAcylationdoes not affect thedistributionofA/Bcompartments.
Then, we analyzed the influence on loop domains, which are contact
domains whose endpoints form a chromatin loop. Using an approach
developed by Rao et al.3, we identified 3193 loop domains in WT_CTCF
and 3263 in MUT_CTCF. Loop domains with both anchors overlapped
weremerged to generate unique results. In the end,weobtained a total
of 4431 merged loop domains, among which 356 were enhanced and
375 were weakened (Fig. 4d, e).

Taken together, these results demonstrate that deficiency of
CTCF O-GlcNAcylation disturbs a subset of loop domains.

Deficiency of CTCF O-GlcNAcylation alters enhancer-promoter
interactions associated with cellular development
To test whether the O-GlcNAcylation of CTCF plays a role in regulating
chromatin loops, we defined the loops with CTCF ChIP-seq peaks
locating on both anchors as CTCF-related loops and performed the
aggregate peak analysis to quantify the differences (Fig. 5a). To
examine the types of interactions in each differential loops, we divided
CTCF-related loops into enhancer-enhancer (E-E), enhancer-promoter
(E-P), promoter-promoter (P-P) and insulator-insulator (I-I)
interactions53. The O-GlcNAc-deficient CTCF-related loops were pre-
ferentially I-I and E-P interactions (Fig. 5b). Since E-P interactions

contribute to gene transcription for cellular development54, we then
analyzed differential CTCF-related E-P interactions. 201 and 316 E-P
interactions were strengthened and weakened respectively (Fig. 5c).
GO analysis revealed that the genes with promoters overlapping the
anchors of strengthened CTCF-related E-P interactions were highly
related to developmental processes and the genes with promoters
overlapping the anchors of weakened CTCF-related E-P interactions
were closely associated with metabolic process and regulation of cell
cycle (Fig. 5d). These results indicate deficiency of CTCF
O-GlcNAcylation may contribute to cellular development.

Taken together, these results demonstrate that deficiency of
CTCF O-GlcNAcylation alters enhancer-promoter interactions which
are closely associated with cellular development.

Deficiency of CTCF O-GlcNAcylation upregulates the expression
of developmental genes
To test whether mutation of CTCF O-GlcNAcylation has any effect on
gene expression, we compared the RNA-seq of MUT_CTCF mESCs
and WT_CTCF mESCs (Fig. 6, Supplementary Fig. 5a). GO analysis
revealed the up-regulated geneswere associatedwith developmental
processes, while the down-regulated genes were associated with cell
adhesion and metabolic process (Supplementary Fig. 5b, c). These
results can partially account for differentiated phenotype of mESCs
when culturing the MUT_CTCF mESCs for a long time (Fig. 7). Next,
we wondered whether the changes in 3D chromatin structure and
CTCF binding have any effect on gene expression. Since deficiency of
O-GlcNAcylation enhanced chromatin binding of CTCF, we thenwant
to determine if the strengthened CTCF-related E-P interactions is
related to the enhanced chromatin binding of CTCF.We analyzed the
reads difference of CTCF peaks on strengthened CTCF-related E-P
interactions and found that overall CTCF binding was enhanced
(Fig. 6a). Further analysis revealed that 65.52% strengthened CTCF-
related E-P interactions had enhanced CTCF peaks on them (Fig. 6b).
We then examined the group of genes targeted by strengthened

Fig. 4 | Deficiency of CTCF O-GlcNAcylation disturbs a subset of loop domains.
a Overall Hi-C contact probability was not significantly affected. b Hi-C contact
maps at 500kb-resolution across entire chromosome 2 in WT_CTCF (left) and in
MUT_CTCF (middle). Compartment scores across entirety of chromosome 2 were
remarkably consistent (right). c Compartment scores were not significantly

affected genome-wide, Pearson’s r was calculated between WT compartment
scores and MUT compartment scores. d Number of loops, loop domains, and
differential loop domains. e Samples of enhanced loop domain (left) andweakened
loop domain (right). See also Supplementary Fig. 4. Source data are provided as a
Source Data file.
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CTCF-related E-P interactions with enhanced CTCF peaks and found
that 63.64% of genes have increased expression (Fig. 6b). GSEA
showed that these genes were enriched in MUT_CTCF mESCs, indi-
cating they were prone to be up-regulated in MUT_CTCF mESCs
(Fig. 6c). GO enrichment analysis further revealed these genes were
enriched for biological processes related to the function of mESCs,
including the ability to proliferate indefinitely in vitro (self-renewal)
and differentiate into cells from all three germ layers (pluripotency)
(Fig. 6d). Specific examples of these genes include Hox genes, like
Hoxd8 and Hoxd9, which are part of an important gene family
involved in limb development and stem cell differentiation55 (Fig. 6f).
GO analysis suggested that mutation of O-GlcNAcylation may affect
the ability of proliferation and lead to differentiation of MUT_CTCF
mESC cell lines.

Taken together, these results indicate that after the deficiency of
O-GlcNAcylation, strengthened CTCF-related E-P interactions with
enhanced CTCF peaks upregulate the expression of developmental
genes (Fig. 6e).

Deficiency of CTCF O-GlcNAcylation negatively regulates main-
tenance and establishment of pluripotency
Emerging evidence suggests that CTCF plays an important role in cell
fate transitions. For example, overexpression of CTCF improves
reprogramming56, knockout of CTCF impedes cell differentiation from
ESCs to neural precursor cells (NPCs)16 and CTCF is a barrier for 2C-like
reprogramming57. Meanwhile, large number of studies have shown
that O-GlcNAcylation plays a role in pluripotency of mESCs. For
instance, O-GlcNAcylation of OCT4 and ESRRB facilitates the main-
tenance of pluripotency47,58, whereas O-GlcNAcylation of SOX2 inhibits
pluripotency46. Importantly, wedemonstrated above thatdeficiency of

CTCF O-GlcNAcylation affects chromatin structure associated with
cellular development. Hence, we wondered whether O-GlcNAcylation
of CTCF is important for cell fate transitions.

To answer this question, WT_CTCF and MUT_CTCF mESCs were
cultured for a prolonged period. The cell viability was inhibited in
MUT_CTCF cells (Fig. 7a) and MUT_CTCF cells grew slower than
WT_CTCF cells due to an elongated G1 phase (Fig. 7b). Moreover,
mutation of O-GlcNAcylation resulted in the reduction of total colony
numbers with an increased proportion of partially differentiated
populations (Fig. 7c, d, g). The expressions of ectodermic marker
genes, Pax3 and Fgf5, were increased (Fig. 7e) while the core plur-
ipotency factors, Oct4 and Nanog, were decreased (Fig. 7f). These
results indicate O-GlcNAcylation is required for maintenance and self-
renewal of mESCs. To study the potential roles of O-GlcNAcylation of
CTCF in differentiation, we performed embryoid body (EB) differ-
entiation, which is a spontaneous differentiation ofmESCs into cells of
all three germ layers. During EBs formation, the sizeof EBswas larger in
MUT_CTCF cells (Fig. 7h) and the expressions of ectodermic markers,
Fgf5 and Pax3, were increased inMUT_CTCF cells comparedwith those
in WT_CTCF cells (Fig. 7i). Furthermore, we performed directional
differentiation from mESCs to NPCs. As shown in Supplementary
Fig. 6a, the expressions of the NPCs markers were decreased, indi-
cating that mutation of O-GlcNAcylation of CTCF inhibits the
differentiation into NPCs. At the same time, we explored the potential
roles of O-GlcNAcylation of CTCF in establishment of pluripotency
during somatic cell reprogramming. We found that mutation of
O-GlcNAcylation decreased reprogramming efficiency (Fig. 7j).

Taken together, our data demonstrates that O-GlcNAcylation of
CTCF is important for the maintenance and establishment of
pluripotency.
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Discussion
In this study, we performed the PTM profiling of CTCF and demon-
strated CTCF can also be O-GlcNAcylated and arginine methylated,
providing a basis for further functional studies on the PTMs of CTCF.
Functionally, we revealed that O-GlcNAcylation inhibits CTCF binding
to chromatin, and deficiency of CTCF O-GlcNAcylation results in the
disruption of loop domains and the alteration of chromatin loops
associated with cellular development. These findings provide a mole-
cularmechanism for regulation of 3D chromatin structure and indicate
the importance of PTMs in chromatin organization. Among the altered
loops, some of them areweakened loops.We also briefly discussed the
potential mechanisms for the weakening of the loops. Since previous
study has indicated the impact of OCT4 on CTCF loops22, we speculate
that it also has an effect on the weakened CTCF loops. To investigate
this, we analyzed the binding of OCT4 on weakened CTCF-related E-P
interactions. The permutation test results indicated that OCT4′s
binding was significantly higher, whether it’s on the anchors of wea-
kened CTCF-related E-P interactions or the CTCF peaks of weakened
CTCF-related E-P interactions (Supplementary Fig. 7a, b). Meanwhile,

we conducted ChIP-qPCR experiments and found that, after the
mutation of O-GlcNAcylation, the chromatin binding of OCT4
decreased on the anchor of the weakened loops (Supplementary
Fig. 7c, d). However, the binding of OCT4 on the anchor of the
strengthened loops remained unchanged (Supplementary Fig. 7c).
These results suggest that the weakened loops may be attributed to
the reduced binding of OCT4. As for why the mutation of CTCF
O-GlcNAcylation leads to a decrease in OCT4 binding on the anchor of
weakened loops, we found that the mutation of O-GlcNAcylation
weakened the interaction between CTCF and OCT4 (Supplementary
Fig. 7e). Therefore, we speculate that at the anchor of weakened loops,
the mutation of O-GlcNAcylation weakens the interaction between
CTCF and OCT4, leading to a decrease in OCT4’s chromatin binding,
whichmay subsequently result in a reduction in the strength of CTCF-
related loops.

CTCF is a widely expressed protein with thousands of chromatin-
binding sites6,8,59,60. Depletion of its zinc finger domain or RNA-binding
domain has different effects on the chromatin binding of CTCF and 3D
chromatin structure19,25,61,62. The PTM profiling performed in this study
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shows that PTMs arewidely distributed in various regions (Fig. 1b), and
the role of PTMs in different regions is also worth investigating.
Meanwhile, CTCF has been reported to favor binding to consensus
motif, which is present at 55,000–65,000 sites in the genome, but
30%–60% of CTCF-binding sites show cell-type-specific pattern7,18,63–65.
Deficiency of O-GlcNAcylation selectively enhances chromatin binding
of CTCF in promoter of developmental genes in mESCs (Fig. 3), indi-
cating that PTMs play a role in the selection of CTCF binding. Fur-
thermore, the cell-type-specific CTCF-binding sites result in selective
gene expression66,67. We found that the level of CTCF O-GlcNAcylation
varies across different tissues (Fig. 2), which may be involved in CTCF-
regulated gene expression in different cell types.

CTCF plays a key role in the organismal development. Studies
have showed that removal of CTCF from oocytes leads to embryo
lethality and homozygous null mutant embryos die by the pre-
implantation68–70. Depletion of CTCF from cardiac progenitors results
in lethality in mice71. Knockout of CTCF gene from neural cells also
causes lethality72. It was showed that CTCF O-GlcNAcylation is com-
mon among different cell types (Fig. 2), the role of CTCF
O-GlcNAcylation in the organismal development remains to be stu-
died. Abnormity of CTCF-mediated chromatin structures leads to
disease5,73, we found that CTCF O-GlcNAcylation regulates 3D chro-
matin structures, whether the O-GlcNAcylation is related to the
abnormal 3D structure is worth studying.
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Methods
Cell culture
ESC lines R174 was used in this study and cultured in gelatin-coated dish
with ESCmedium, which consisted of DMEM (Hyclone, #SH30022.01),
15% (v/v) fetal bovine serum (FBS, Lonsera, #S712-012S), 0.1mM β-
mercaptoethanol (Sigma, #M6250), 2mM L-glutamine (Thermo
Fisher, #35050061), 0.1mM nonessential amino acids (Thermo Fisher,
#11140050), 1% (v/v) nucleoside mix (Sigma), 1000U/mL recombinant
LIF (Millipore).

Mouse CTCF-EGFP-AID ESCs were presented by Bruneau lab14 and
cultured in gelatin-coated dish with ESC medium. For the depletion of
CTCF, the cells were cultured in ESC medium with 0.5mM auxin
(Sigma, #I5148-2g) for 2 days. To establish the T668A glycosylated
mutant CTCF (MUT_CTCF) and WT CTCF (WT_CTCF) in CTCF-EGFP-
AIDESCs,whose exogenousCTCFwas in similar levelwith endogenous
CTCF in CTCF-EGFP-AID ESCs, the fragment of MUT_CTCF and
WT_CTCF was subcloned into pJD10575 and the Fugene HD (Promega,
#E2311) was used for transfection and the cells were selected by
Hygromycin B (Thermo Fisher, #10687010). Cell clones were picked
and then cultured in ESC medium with 0.5mM auxin for 2 days to
degrade endogenous CTCF. The clone whose expression level of
exogenous CTCF was similar with endogenous was identified by anti-
CTCF antibody and was used in the functional experiments.

To knockdown Ogt, we used lipofectamineTM2000 for siRNA
transfection. Gene expression was detected through RT-qPCR after
72 h. The cells with the highest knockdown efficiency were used for
downstream experiments.

NPC differentiation
The cell line was cultured in N2B27 medium which consisted of a 1:1
mixture of DMEM supplemented with 1× N2 (Gibco, #17502048),
NEAA, 1 mM L-glutamine, and 0.1mM β-mercaptoethanol with Neu-
robasal (Thermo Fisher, #21103049) supplemented with B27 (Gibco,
#17504044). After 7 days, the cells were harvested and the total mRNA
was extracted for RT-qPCR.

Antibodies
Antibodies used in this study were anti-CTCF (Active Motif, #61311),
anti-CTCF (Abclonal, #A19588), anti-RL2 (abcam, #ab2739), anti-OGT
(GeneTex, #GTX109939), anti-Mono-Methyl Arginine (MMA) antibody
(CST, #8015), anti-Symmetric Di-Methyl Arginine (SDMA) antibody
(PTMBIO, #PTM-617RM), anti-Asymmetric Di-Methyl Arginine (ADMA)
antibody (PTMBIO, #PTM-605RM), anti-Acetyllysine antibody
(PTMBIO, #PTM-105RM), anti-GAPDH (Abclonal, #AC001), anti-OCT4
(Santa, #sc-5279), anti-SOX2 (Santa, #sc-36582-3), anti-NANOG (Bethyl,
#A300-397A), anti-H3 (Santa, #sc-17576). Goat anti-rabbit-IgG
(H + L)–HRP (CST, #7074s), and goat anti-mouse-IgG (H + L)-HRP
(CST, #7076s) were used as secondary antibodies for western blotting.

The purification of CTCF
A total of 50 million cells were harvested by trypsinization, washed
with cold PBS, and frozen in liquid nitrogen. Whole-cell pellets were
lysed in lysis buffer (50mMHEPES pH= 7.6, 250mMNaCl, 0.1% NP-40,
0.2mMEDTA, 0.2mMPMSF, 1× protease inhibitor cocktail) on ice. The
lysates were cleared by centrifugation at 16,000 × g for 10min at 4 °C
and the supernatant was protein extraction. Antibody-based purifica-
tion was performed to detect the PTMs of endogenous CTCF. Briefly,
CTCF antibody was conjugated with Protein G agarose (Roche,
#11243233001) by incubating in IP DNP buffer (20mMHEPES pH= 7.6,
0.2mM EDTA, 1.5mMMgCl2, 100mMKCl, 20% glycerol, 0.02% NP-40,
1× protease inhibitor cocktail) overnight at 4 °C and washed twice.
Then, protein extraction was added to the Protein G agarose and
rotated at 4 °C. After 12 h, the supernatant was removed and the
antibody-conjugated Protein G agarose was washed twice with IP DNP
buffer. 2× SDS loading buffer was added to the antibody-conjugated

Protein G agarose and the protein was eluted by boiling 5min at 95 °C.
SDS-PAGE analysis was applied to assess purification efficiency and the
remaining protein was kept in −80 °C for mass spectrometric and
western blot.

Mass spectrometric analysis of CTCF PTMs
Coomassie-stained SDS-PAGE gel bandwas excised and incubatedwith
200μL of 100mM ammonium bicarbonate with 25% ACN at 37 °C.
After 30min, the supernatant was removed and the gel slices was
incubated with 10mM DTT solution at 60 °C for 30min. The DTT
solution was removed and 100mM IAA solution was added and incu-
bated sample at 37 °C for 15min in the dark with shaking. After then,
IAA solution was removed and 100mM ammonium bicarbonate/25%
ACN was added to rinse gel slices. In order to digest the gel, 500μL of
ACN was added to shrink gel pieces and was removed after 15min.
100mM ammonium bicarbonate was added to recover gel and 1mg/
mL trypsin stock solution was added in the sample to digest overnight
at 37 °C. The gel pieces were extracted three times by adding 50μL of
25% ACN/0.1% TFA solution and incubated at 37 °C for 5–15min. The
supernatant was transferred to a new tube and the peptides were
completely dried under vacuum. The peptides were desalted using
reverse-phase solid-phase extraction cartridges (Sep-Pak C-18), com-
pletely dried under vacuum, andwere resuspended in0.1% formic acid
before LC–MS/MS analysis. The mass spectrometry experiments were
repeated twice and the coverage of theproteinwas 68.26% and65.33%,
respectively. Only modifications identified in both mass spectrometry
experiments were considered as modifications identified for CTCF.

Enrichment of O-GlcNAcylated, methylated, and acetylated
proteins
25 million cells were individually used for the enrichment of O-
GlcNAcylated, methylated, and acetylated proteins and protein
extraction was the same as above and denatured by boiling for 10min
at 95 °C. For enrichment of O-GlcNAcylated protein, WGA and RL2
purifications were carried out as described elsewhere76. Denatured
proteins were incubated overnight at 4 °C with agarose-bound WGA
resin (Vector Laboratories, #AL-1023S) or with RL2-conjugated Protein
G agarose. The agarosewas thenwashed twicewith lysis buffer and the
eluted proteins were analyzed by western blot. For enrichment of
methylated proteins, anti-Mono-Methyl Arginine (MMA) antibody,
anti-Symmetric Di-Methyl Arginine (SDMA) antibody and anti-
Asymmetric Di-Methyl Arginine (ADMA) antibody were used respec-
tively as above. For enrichment of acetylated proteins, anti-
Acetyllysine antibody was used as above. Agarose without WGA or
IgG-conjugated agarose were used as control.

Identification of phosphorylation modification
2 × 107 cells were collected for protein extraction and proteins were
digested into peptides. Phosphorylated peptides were enriched and
identified by mass spectrometry according to ref. 77.

The treatment of β-N-Acetyl-hexosaminidase (β-hex), and peri-
odate oxidized adenosine (AdOx)
The treatment of β-N-Acetyl-hexosaminidase (β-hex, NEB, #P0721S)
was performed according to the manufacturer’s instructions, and 4μg
purified CTCF was used. For the treatment of periodate oxidized
adenosine (AdOx, TargetMol, #T22231), mESCs were treated with
30μM AdOx and DMSO for 36 h and harvested for the purification
of CTCF.

Co-immunoprecipitation
10 million cells were collected and nuclear extracts were prepared
from mESCs as described78. Endogenous CTCF was immunoprecipi-
tated with 5 µg of CTCF antibody pre-bound to Protein G agarose and
co-immunoprecipitated OGT was identified by western blot with the
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antibody of OGT. The immunoprecipitation of OGT was done as
the same.

Tissue protein extraction
Tissue protein used in Fig. 2e was generously provided by Dr. Ma from
PekingUniversity. The tissuewasdissected on ice in PBS/10% FBS. Each
tissue was separated and placed to separate tubes using fine-pointed
forceps. The dissected tissues were weighed, and then washed with
PBS on ice. A ratio of ~1 g of tissue to 20mL T-PER Reagent (Thermo,
#78510) was added to the tissue sample. After homogenizing, the tis-
sues were centrifuged for 5min at 10,000 × g. The supernatant was
collected and the protein was quantified by BCA Protein Assay Kit. For
the purification of CTCF, each tissue sample weighing 200mg was
used for protein extraction and 500 µg protein was used as total input
to purify CTCF.

Western blot
Samples were electrophoresed on SDS-PAGE gels and transferred to
PVDF membranes (BIO-RAD, #1620177), and the membranes were
blocked in 5%BSAat room temperature. After 1 h, themembraneswere
incubated with the primary antibody overnight at 4 °C, washed three
times, and incubated with peroxidase-labeled secondary antibody for
1 h at room temperature. After three washes with TBST, bands were
visualized with ECL substrate (BIO-RAD, #1705061) and imaged with a
CCD camera. All uncropped and unprocessed scans of blots were
provided in the Source Data file.

Immunofluorescence
Cells were grown on gelatin-coated glass for 24 h and then fixed in 4%
paraformaldehyde (PFA, Solarbio, #P1110) for 15min. After washing
with PBS, cells were permeabilized with 0.25% Triton X-100
(AMERSCO, #0694-1L) and blocked with 10% bovine serum albumin.
After 1 h, cells were incubated with CTCF antibodies in 3% BSA over-
night at 2–8 °C. After washing 3 times with PBS, cells were incubated
with secondary antibodies for 1 h. The fixed cells were imaged using
confocal microscopy.

ChIP-seq
Cells were crosslinked in 1% formaldehyde (Sigma, #F8775) for 10min
at room temperature and quenched with 125mM glycine (Sigma,
#G7126) for 5min. After then, the cells were collected and incubated in
lysis buffer I (50mM HEPES-KOH, pH= 7.5, 140mM NaCl, 1mM EDTA,
10% glycerol, 0.5% NP-40, 0.25% Triton X-100, protease inhibitors).
After 10min, the cells were collected, resuspended in lysis buffer II
(10mM Tris-HCl, pH = 8.0, 200mM NaCl, 1mM EDTA, 0.5mM EGTA,
protease inhibitors), and rotated for 10min. For sonication, the cells
were collected, and resuspended in sonication buffer (20mMTris-HCl
pH= 8.0, 150mM NaCl, 2mM EDTA pH= 8.0, 0.1% SDS, and 1% Triton
X-100, protease inhibitors). Sonicated lysates were cleared once by
centrifugation at 16,000 × g for 10min at 4 °C and the supernatant was
transferred to 15ml conical tube. Spike-in Drosophila chromatin
(Active Motif, #53083) was added to the supernatant and 50μL of
mixture was saved as input. 10mg of anti-CTCF (Active Motif, #61311)
togetherwith 4mgspike-in antibody (Activemotif, #61686)was added
alongside with beads. The remainder of the mixture was incubated
withmagnetic beads boundwith antibody to enrich forDNA fragments
overnight at 4 °C. The next day, beads were washed with wash buffer
(50mMHEPES-KOH pH= 7.5, 500mM LiCl, 1mM EDTA pH= 8.0, 0.7%
Na-Deoxycholate, 1% NP-40) and followed with TE buffer (10mM Tris-
HCl pH 8.0, 1mM EDTA, 50mM NaCl). Beads were removed by incu-
bation at 65 °C for 30min in elution buffer (50mM Tris-HCl pH= 8.0,
10mM EDTA, 1% SDS), and supernatant was reverse crosslinked over-
night at 65 °C. To purify eluted DNA, 200μL TE was added to dilute
SDS, and 8μL 10mg/ml RNase A (Thermo Fisher, #EN0531) was added
to degrade RNA. After 2 h, protein was degraded by addition of 4μL

20mg/ml proteinase K (Thermo Fisher, #25530049) and incubation at
55 °C for 2 h. Phenol: chloroform: isoamyl alcohol extraction (G-
CLONE, #EX0128)wasperformed followedby anethanol precipitation.
The DNA pellet was then resuspended in 50μL TE. Library was per-
formed with NEBNext Ultra II DNA library kit (NEB, #E7645). Two
biological replicates were performed for each cell line.

ATAC-seq
Cells were collected, washed with PBS, and incubated in lysis buffer
(10mM Tris-HCl, 10mMNaCl, 3mMMgCl2, 0.5% NP-40) for 10min at
4 °C. After 5min of centrifugation, TruePrepTM DNA Library Prep Kit
V2 for Illumina® (Vazyme, #TD501) was used to make DNA fragmen-
tation. After 30min, 100μL VAHTS DNA Clean Beads (Vazyme, #N411)
were added to the sample. Then, DNAwas collectedwith amagnet and
washed with 80% ethanol. H2O was added to elute the DNA and library
preparation was performed with TruePrepTM Index Kit V2 for Illu-
mina® (Vazyme, #TD202). Libraries were amplified for 12–15 cycles and
were size-selectedwith VAHTSDNACleanBeads (Vazyme, #N411). Two
biological replicates were performed for each cell line.

In situ Hi-C
In situ Hi-C was performed as in Rao et al.3 with some modifications.
Cells were crosslinked as above. Cells were incubated in lysis buffer
(10mM Tris-HCl pH8.0, 10mM NaCl, 0.2% Igepal CA630, protease
inhibitors cocktail) for 15min at 4 °C and washed twice. Cells were
collected and incubated in 50μL of 0.5% SDS at 65 °C for 8min. Then
25μL 10% Triton-X and 145μL H2O were added to quenched SDS. To
digest chromatin, 25μL of 10× NEBuffer2 and 20μL of MboI (New
England Biolabs, #R0147) were added and incubated overnight at
37 °C. The next day, restriction fragments were biotinylated by sup-
plementing the reaction with 37.5μL biotin-14-dATP (Life Technolo-
gies, #19524016), 1.5μL of 10mMdCTP (Invitrogen, #18253013), 1.5μL
of 10mM dGTP (Invitrogen, #18254011), 1.5μL of 10mM dTTP (Invi-
trogen, #18255018), 8μL of DNA polymerase I, large (Klenow) frag-
ment (New England Biolabs, #M0210) and incubated at 37 °C for 4 h.
The end-repaired chromatin was added into 663μL H2O, 120μL NEB
T4 ligase buffer, 100μL 10%Triton-X-100, 12μL 10mg/mLBSA, 5μL T4
DNA ligase (New England Biolabs, #M0202) and incubated for 4 h at
room temperature. To reverse crosslink, 50μL of 20mg/ml proteinase
K, 120μL 10% SDS and 130μL 5M NaCl were added in order and
incubated at 68 °C overnight. The DNA was precipitated with ethanol
and resuspended in 130μLof Tris-buffer (10mMTris-HCl, pH = 8.0) for
sonication. Then the liquid volume is replenished to 300μL. To isolate
biotin-labeled ligation junctions, 150μL of 10mg/ml Dynabeads
MyOneStreptavidinT1 beads (Life technologies, #65602)werewashed
with 400μL of 1× Tween washing buffer (5mM Tris-HCl pH = 7.5,
0.5mM EDTA, 1M NaCl, 0.05% Tween 20), collected with a magnet,
resuspended in 300μL of 2× binding buffer (10mM Tris-HCl pH = 7.5,
1mM EDTA, 2M NaCl) and added to the sample. After 45min, bioti-
nylated DNAwas bound to the beads. To remove end-repair and biotin
from unligated ends, 88μL 1× NEB T4 DNA ligase buffer, 2μL dNTPs,
5μL T4 PNK (New England Biolabs, #M0201), 4μL T4 DNA polymerase
I (New England Biolabs, #M0203), 1μL DNA polymerase I, large frag-
ment (Klenow) were added to incubate for 30min at room tempera-
ture. The beads were washed twice in 1× Tween Wash Buffer 2min at
55 °C. A-tailing was performed by incubating in 90μL 1× NEB buffer 2,
5μL dATP, 5μL Klenow exo at 37 °C for 30min. The adapter was
ligated by incubating in a mixture of 50μL 1× Quick Ligation Buffer,
2μL Quick Ligase (New England Biolabs, #M2200), and 3μL Illumina
indexed adapter (New England Biolabs, #E7337) for 15min at room
temperature and followed by adding 2.5μL User Enzyme. Library was
performed with a NEBNext DNA Library Prep Kit and amplified for
10–12 cycles and were size-selected with AMPure XP beads (Beckman
Coulter, #A63881). Three biological replicates were performed for
each cell line.
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RNA isolation and RNA-seq
Cell pellets were homogenized in RNAzol reagent (MRC, #RN190-500)
and processed according to the manufacturer’s instructions. Then the
total mRNA was extracted for sequencing. Two biological replicates
were performed for each cell line.

Flow cytometry analysis
Single-cell suspensions were prepared and were fixed. The Foxp3/
Transcription Factor Staining Buffer Set (eBioscience, #00-5523-00)
was used according to the manufacturer’s instructions to detect the
expression of CTCF. For cell cycle analysis, two days after treatment of
auxin, 1000WT_CTCF, and MUT_CTCF mESCs were seeded into indi-
vidual wells of a six-well plate. After 4 days, the cells were collected,
fixed in 75% ethanol, and washed three times. DAPI (Sigma,
#10236276001) was used for staining and cells were analyzed by flow
cytometry. Experiments were conducted in three independent
triplicates.

Cell viability assay
The cell counting kit 8 (CCK8) (DOJINDO, #CK04) was used according
to the manufacturer’s instructions. Experiments were conducted in
three independent triplicates.

Colony formation assay
Two days after treatment of auxin, 1000 WT_CTCF and MUT_CTCF
mESCs were seeded into individual wells of a six-well plate. After
5 days, the colonies were stained by alkaline phosphate (AP, Yeasen,
#40749ES60). Colonies of undifferentiated cells (UD), partially dif-
ferentiated cells (PD), and differentiated cells (D) in each well were
counted. Experiments were conducted in three independent
triplicates.

EB differentiation assay
105WT_CTCF and MUT_CTCF were cultured in standard ESC medium
without LIF. Images were taken at day 2, 4, 8, and 14.

Prediction of protein–protein interaction
Predicted protein structures of CTCF (Q61164) andOGT (Q8CGY8) are
obtained from Alphafold Protein Structure Database. Protein–protein
interactions are predicted by ZDOCK Server49 (https://zdock.
umassmed.edu/) and visualized by PyMol.

Quality control of sequencing reads
All the Illumina sequencing reads used in the study were firstly quality
controlled by TrimGalore. In detail, we removed the bases with quality
below 20 and the adapter sequences from the 3′ end, and filtered the
reads with length less than 50nt.

RNA-seq data analysis
RNA-seq reads were aligned to mm9 reference genome using STAR79

with default parameters. The uniquely mapped reads were counted
with HTSeq-count. We detected the differentially expressed genes
using edgeR80. Genes were considered differentially expressed when
the p-value < 0.05 and the fold change is above 2.0. GSEA analysis was
performed by GSEA_Linux_4.0.381.

ChIP-seq and ATAC-seq data analysis
ChIP-seq and ATAC-seq reads were aligned to mm9 reference genome
using Bowtie282 with default parameters, followed by removing the
multiple aligned reads, PCR duplications with SAMtools. Alignment
track bigwig files were generated using deepTools83. ChIP-seq and
ATAC-seq profiling plot were generated by deepTools83.

ChIP-seq data were aligned to BDGP6 reference genome, followed
by removing the multiple aligned reads. Spike-in reads were counted
and scale-factors between samples were determined for downstream

analyses. For differential binding analysis, we first called CTCF peak by
macs2 peak calling pipeline (https://github.com/macs3-project/MACS/
wiki/Advanced:-Call-peaks-using-MACS2-subcommands) with multi-
plication of scale factors to generate bedGraph files. We then con-
catenatedWT_CTCF andMUT_CTCFCTCFpeaks to get full set of CTCF
peaks, and then used bedtoolsmulticov for reads counting on all CTCF
peaks. Read counts were then normalized by scale factors and R
package DESeq2 was used to perform differential analysis.

In situ Hi-C data analysis
Hi-C reads were processed using Hi-C-Pro84 pipeline: reads were
aligned tomm9 reference genome using bowtie2, reads withmapping
quality >10 were assigned to MboI restriction fragments, and interac-
tion pairs were reconstructed. Singleton or multi-hits pairs were fil-
tered out, followed by removal of failed ligation products (dangling
end pairs, re-ligation pairs, self-cycle pairs) and pairs not able to
reconstruct the ligation product. Remaining pairs were then de-
duplicated and used for building contact matrices. Contact matrices
were normalized by iterative correction and eigenvector
decomposition (ICE).

Compartments were identified by CscoreTool85 on 500 kb-
resolution contact matrices. Loop domains were identified using the
method proposed by Rao et al. 86. Loops were annotated by HiCCUPS
with default parameters (-r 5000, 10000, 25000 –f 0.1). Differential
loopswere identified bydiffloop87. CTCF-related loopswere defined as
loops with CTCF ChIP-seq peaks located on both anchors. Aggregate
peak analysis about loops were performed by GENOVA88. The corre-
lations of contact matrices were analyzed by HiCRep89.

Definition of regulatory regions
Enhancers were defined as H3K27ac peaks that did not overlap with a
promoter. Insulators were defined according to reference53, and insu-
lators were identified as the subset of CTCF ChIP-seq peaks that
overlapped SMC1 ChIA-PET anchors.

Genomic feature analysis
BEDTools90 was used to perform analysis about genomic intervals,
including intersecting, expanding, flanking and randomly shuffling
intervals.

Gene ontology analysis
Gene symbols were first converted to EntrzID with R package BiomaRt
(version 2.42.0)91. Gene ontology analysis is based on reference92.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Previously published raw reads of ChIP-seq data were downloaded
from GSE29218 (CTCF)1, GSE85185 (CTCF)14, GSM2417096 (H3K27ac)93

and re-processed as described in methods. Previously published raw
reads of Hi-C data were downloaded from GSE9610752, and re-
processed as described in methods. All datasets are available in GEO
under the accession number GSE255897. Other information needed is
available form corresponding author upon request. Source data are
provided with this paper.
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